Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz J Psychiatry ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467473

ABSTRACT

OBJECTIVE: Post-traumatic stress disorder (PTSD) is triggered by traumatic events, but genetic vulnerability and a history of childhood trauma are additional factors that may increase the risk of PTSD. Thus, our study focused on exploring the interaction between genetic susceptibility, as assessed by polygenic risk score (PRS), and traumatic events. METHODS: We evaluated 68 women with PTSD who had been sexually assaulted and 63 healthy controls without a history of sexual assault. DNA was genotyped using the Infinium Global Screening Array (Illumina), and PRS analysis was performed using PRSice. Furthermore, logistic regression models were employed to examine the interaction between childhood trauma, traumatic life events, and PTSD-PRS and how they contribute to the risk of developing PTSD. RESULTS: We found a significant association between PRS, childhood trauma (p = 0.03; OR = 1.241), and PTSD. Additionally, an interaction was observed between PRS, traumatic life events, and childhood trauma, particularly relating to physical and emotional neglect (p = 0.028; OR = 1.010). When examining neglect separately, we found a modest association between emotional neglect and PTSD (p = 0.014; OR = 1.086). CONCLUSIONS: Our findings highlight the importance of considering genetic vulnerability and traumatic experiences in understanding the etiology of PTSD.

2.
Braz J Psychiatry ; 45(3): 226-235, 2023.
Article in English | MEDLINE | ID: mdl-36918037

ABSTRACT

OBJECTIVES: Gene-environment interactions increase the risk of psychosis. The objective of this study was to investigate gene-gene and gene-environment interactions in psychosis, including single nucleotide variants (SNVs) of dopamine-2 receptor (D2R), N-methyl-d-aspartate receptor (NMDAR), and cannabinoid receptor type 1 (CB1R), lifetime cannabis use, and childhood trauma. METHODS: Twenty-three SNVs of genes encoding D2R (DRD2: rs1799978, rs7131056, rs6275), NMDAR (GRIN1: rs4880213, rs11146020; GRIN2A: rs1420040, rs11866328; GRIN2B: rs890, rs2098469, rs7298664), and CB1R (CNR1: rs806380, rs806379, rs1049353, rs6454674, rs1535255, rs2023239, rs12720071, rs6928499, rs806374, rs7766029, rs806378, rs10485170, rs9450898) were genotyped in 143 first-episode psychosis patients (FEPp) and 286 community-based controls by Illumina HumanCoreExome-24 BeadChip. Gene-gene and gene-environment associations were assessed using nonparametric Multifactor Dimensionality Reduction software. RESULTS: Single-locus analyses among the 23 SNVs for psychosis and gene-gene interactions were not significant (p > 0.05 for all comparisons); however, both environmental risk factors showed an association with psychosis (p < 0.001). Moreover, gene-environment interactions were significant for an SNV in CNR1 and cannabis use. The best-performing model was the combination of CNR1 rs12720071 and lifetime cannabis use (p < 0.001), suggesting an increased risk of psychosis. CONCLUSION: Our study supports the hypothesis of gene-environment interactions for psychosis involving T-allele carriers of CNR1 SNVs, childhood trauma, and cannabis use.


Subject(s)
Adverse Childhood Experiences , Cannabis , Psychotic Disorders , Humans , Cannabis/adverse effects , Genotype , Polymorphism, Single Nucleotide/genetics , Psychotic Disorders/genetics , Receptor, Cannabinoid, CB1/genetics
3.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(3): 226-235, May-June 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447586

ABSTRACT

Objectives: Gene-environment interactions increase the risk of psychosis. The objective of this study was to investigate gene-gene and gene-environment interactions in psychosis, including single nucleotide variants (SNVs) of dopamine-2 receptor (D2R), N-methyl-d-aspartate receptor (NMDAR), and cannabinoid receptor type 1 (CB1R), lifetime cannabis use, and childhood trauma. Methods: Twenty-three SNVs of genes encoding D2R (DRD2: rs1799978, rs7131056, rs6275), NMDAR (GRIN1: rs4880213, rs11146020; GRIN2A: rs1420040, rs11866328; GRIN2B: rs890, rs2098469, rs7298664), and CB1R (CNR1: rs806380, rs806379, rs1049353, rs6454674, rs1535255, rs2023239, rs12720071, rs6928499, rs806374, rs7766029, rs806378, rs10485170, rs9450898) were genotyped in 143 first-episode psychosis patients (FEPp) and 286 community-based controls by Illumina HumanCoreExome-24 BeadChip. Gene-gene and gene-environment associations were assessed using nonparametric Multifactor Dimensionality Reduction software. Results: Single-locus analyses among the 23 SNVs for psychosis and gene-gene interactions were not significant (p > 0.05 for all comparisons); however, both environmental risk factors showed an association with psychosis (p < 0.001). Moreover, gene-environment interactions were significant for an SNV in CNR1 and cannabis use. The best-performing model was the combination of CNR1 rs12720071 and lifetime cannabis use (p < 0.001), suggesting an increased risk of psychosis. Conclusion: Our study supports the hypothesis of gene-environment interactions for psychosis involving T-allele carriers of CNR1 SNVs, childhood trauma, and cannabis use.

SELECTION OF CITATIONS
SEARCH DETAIL
...