Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Res (Camb) ; 5(4): 1244-1255, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-30090429

ABSTRACT

Liposomes have received extensive attention as nanocarriers for bioactive compounds due to their good biocompatibility, possibility of targeting and incorporation of hydrophilic and hydrophobic compounds. Although generally considered as safe, detailed knowledge of the effects induced in cells and tissues with which they interact is still underexplored. The aim of this study is to gain insight into the toxicity profile of dioctadecyldimethylammonium (DODAX) : monoolein(MO) liposomes (X is bromide or chloride), previously validated for gene therapy, by evaluating the effect of the counter ions Br- or Cl-, and of the cationic : neutral lipid molar fraction, both in vitro and in vivo. Effects on cellular metabolism and proliferation, plasma membrane integrity, oxidative stress, mitochondrial membrane potential dysfunction and ability to trigger apoptosis and necrosis were evaluated in a dose-/time-dependent manner in normal human skin fibroblasts. Also, newly fertilized zebrafish zygotes were exposed to liposomes, permitting a fast-track evaluation of the morphophysiological modifications. In vitro data showed that only very high doses of DODAX : MO induce apoptosis and necrosis, inhibit cell proliferation, and affect the metabolism and plasma membrane integrity of fibroblasts in a dose-/time-dependent manner. Furthermore, liposomes affected mitochondrial function, increasing ROS accumulation and disturbing mitochondrial membrane potential. DODAC-based liposomes were consistently more toxic when compared to DODAB-based formulations; furthermore, the inclusion of MO was found to reduce toxicity, in contrast to liposomes with cationic DODAX only, especially in DODAB : MO (1 : 2) nanocarriers. These results were corroborated, in a holistic approach, by cytotoxicity profiling in five additional human cell lines, and also with the zebrafish embryotoxicity testing, which constitutes a sensitive and informative tool and accurately extends cell-based assays.

2.
ACS Appl Mater Interfaces ; 6(9): 6977-89, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24712543

ABSTRACT

This study describes a novel liposomal formulation for siRNA delivery, based on the mixture of the neutral lipid monoolein (MO) and cationic lipids of the dioctadecyldimethylammonium (DODA) family. The cationic lipids dioctadecyldimethylammonium bromide (DODAB) and chloride (DODAC) were compared in order to identify which one will most efficiently induce gene silencing. MO has a fluidizing effect on DODAC and DODAB liposomes, although it was more homogeneously distributed in DODAC bilayers. All MO-based liposomal formulations were able to efficiently encapsulate siRNA. Stable lipoplexes of small size (100-160 nm) with a positive surface charge (>+45 mV) were formed. A more uniform MO incorporation in DODAC:MO may explain an increase of the fusogenic potential of these liposomes. The siRNA-lipoplexes were readily internalized by human nonsmall cell lung carcinoma (H1299) cells, in an energy dependent process. DODAB:MO nanocarriers showed a higher internalization efficiency in comparison to DODAC:MO lipoplexes, and were also more efficient in promoting gene silencing. MO had a similar gene silencing ability as the commonly used helper lipid 1,2-dioleyl-3-phosphatidylethanolamine (DOPE), but with much lower cytotoxicity. Taking in consideration all the results presented, DODAB:MO liposomes are the most promising tested formulation for systemic siRNA delivery.


Subject(s)
Drug Carriers , Gene Silencing , Glycerides/chemistry , Nanostructures , Quaternary Ammonium Compounds/chemistry , Cell Line, Tumor , Humans , In Vitro Techniques , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...