Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 120: 111678, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545840

ABSTRACT

One of the challenges of nanotechnology is to improve the efficacy of treatments for diseases, in order to reduce morbidity and mortality rates. Following this line of study, we made a nanoparticle formulation with a small size, uniform surfaces, and a satisfactory encapsulation coefficient as a target for colorectal cancer cells. The results of binding and uptake prove that using the target system with folic acid works: Using this system, cytotoxicity and cell death are increased when compared to using free oxaliplatin. The data show that the system maximized the efficiency of oxaliplatin in modulating tumor progression, increasing apoptosis and decreasing resistance to the drug. Thus, for the first time, our findings suggest that PLGA-PEG-FA increases the antitumor effectiveness of oxaliplatin by functioning as a facilitator of drug delivery in colorectal cancer.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Nanoparticles , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Drug Carriers/therapeutic use , Folic Acid , Humans , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Polyethylene Glycols
2.
Int J Mol Sci ; 20(9)2019 May 11.
Article in English | MEDLINE | ID: mdl-31083590

ABSTRACT

Cationic polymeric nanoparticles (NPs) have the ability to overcome biological membranes, leading to improved efficacy of anticancer drugs. The modulation of the particle-cell interaction is desired to control this effect and avoid toxicity to normal cells. In this study, we explored the surface functionalization of cationic polymethylmethacrylate (PMMA) NPs with two natural compounds, sialic acid (SA) and cholesterol (Chol). The performance of benznidazole (BNZ) was assessed in vitro in the normal renal cell line (HEK-293) and three human cancer cell lines, as follows: human colorectal cancer (HT-29), human cervical carcinoma (HeLa), and human hepatocyte carcinoma (HepG2). The structural properties and feasibility of NPs were evaluated and the changes induced by SA and Chol were determined by using multiple analytical approaches. Small (<200 nm) spherical NPs, with a narrow size distribution and high drug-loading efficiency were prepared by using a simple and reproducible emulsification solvent evaporation method. The drug interactions in the different self-assembled NPs were assessed by using Fourier transform-infrared spectroscopy. All formulations exhibited a slow drug-release profile and physical stability for more than 6 weeks. Both SA and Chol changed the kinetic properties of NPs and the anticancer efficacy. The feasibility and potential of SA/Chol-functionalized NPs has been demonstrated in vitro in the HEK-293, HepG2, HeLa, and HT-29 cell lines as a promising system for the delivery of BNZ.


Subject(s)
Antineoplastic Agents/pharmacology , Chemical Phenomena , Cholesterol/chemistry , Drug Liberation , N-Acetylneuraminic Acid/chemistry , Nanoparticles/chemistry , Nitroimidazoles/chemistry , Cations , Cell Death/drug effects , Drug Compounding , HEK293 Cells , HT29 Cells , HeLa Cells , Humans , Kinetics , Particle Size , Spectroscopy, Fourier Transform Infrared , Static Electricity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...