Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(7)2023 04 06.
Article in English | MEDLINE | ID: mdl-37048165

ABSTRACT

The COVID-19 pandemic was triggered by the coronavirus SARS-CoV-2, whose peak occurred in the years 2020 and 2021. The main target of this virus is the lung, and the infection is associated with an accentuated inflammatory process involving mainly the innate arm of the immune system. Here, we described the induction of a pulmonary inflammatory process triggered by the intranasal (IN) instillation of UV-inactivated SARS-CoV-2 in C57BL/6 female mice, and then the evaluation of the ability of vitamin D (VitD) to control this process. The assays used to estimate the severity of lung involvement included the total and differential number of cells in the bronchoalveolar lavage fluid (BALF), histopathological analysis, quantification of T cell subsets, and inflammatory mediators by RT-PCR, cytokine quantification in lung homogenates, and flow cytometric analysis of cells recovered from lung parenchyma. The IN instillation of inactivated SARS-CoV-2 triggered a pulmonary inflammatory process, consisting of various cell types and mediators, resembling the typical inflammation found in transgenic mice infected with SARS-CoV-2. This inflammatory process was significantly decreased by the IN delivery of VitD, but not by its IP administration, suggesting that this hormone could have a therapeutic potential in COVID-19 if locally applied. To our knowledge, the local delivery of VitD to downmodulate lung inflammation in COVID-19 is an original proposition.


Subject(s)
COVID-19 , Pneumonia , Mice , Animals , Female , Humans , SARS-CoV-2 , Vitamin D/pharmacology , Pandemics , Mice, Inbred C57BL , Vitamins , Mice, Transgenic
2.
Immunol Lett ; 255: 10-20, 2023 03.
Article in English | MEDLINE | ID: mdl-36646290

ABSTRACT

Obesity and allergic asthma are inflammatory chronic diseases mediated by distinct immunological features, obesity presents a Th1/Th17 profile, asthma is commonly associated with Th2 response. However, when combined, they result in more severe asthma symptoms, greater frequency of exacerbation episodes, and lower therapy responsiveness. These features lead to decreased life quality, associated with higher morbidity/mortality rates.  In addition, obesity prompts specific asthma phenotypes, which can be dependent on atopic status, age, and gender. In adults, obesity is associated with neutrophilic/Th17 profile, while in children, the outcome is diverse, in some cases children with obesity present aggravation of atopy, and Th2 inflammation, and in others an association with a Th1 profile, with reduced IgE levels and eosinophilia. These alterations occur due to a complex group of factors among which the microbiome has been recently explored. Particularly, evidence shows its important role in susceptibility or resistance to asthma development, via gut-lung-axis, and demonstrates its relevance to the immune pathogenesis of the syndrome. Few studies address the relevance of the lung microbiome in shaping the immune response, locally. However, specific bacteria, like Moraxella catarrhalis, Haemophilus influenza, and Streptococcus pneumoniae, correlate with important features of the obese-asthmatic phenotype. Although maternal obesity is known to increase asthma risk in offspring, the impact on lung colonization is unknown. This review details the main key immune mechanisms involved in obesity-aggravated asthma, featuring the effect of maternal obesity in the establishment of gut and lung microbiota of the offspring, acting as potential childhood asthma inducer.


Subject(s)
Asthma , Microbiota , Obesity, Maternal , Pregnancy , Female , Humans , Obesity, Maternal/complications , Obesity, Maternal/pathology , Lung/pathology , Obesity
SELECTION OF CITATIONS
SEARCH DETAIL
...