Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37444872

ABSTRACT

This paper discusses the challenges in using natural fibers for the development of textile-reinforced mortar (TRM) composites with pseudo-strain-hardening and multiple cracking behavior. The particular characteristics of natural vegetal fibers are analyzed with reference to data from the literature. It is concluded that the efficient use of these fibers as composite reinforcement requires the development of treatment or impregnation protocols for overcoming durability issues, eliminating crimping effects in tensile response and imparting dimensional stability. Relevant experimental research on the synthesis and performance of natural TRMs is reviewed, showing that the fabrication of such systems is, at present, largely based on empirical rather than engineering design. In order to set a framework regarding the properties that the constituents of natural TRM must meet, a comparative analysis is performed against inorganic matrix composites comprising synthetic, mineral and metallic reinforcement. This highlights the need for selecting matrix materials compatible with natural fibers in terms of stiffness and strength. Furthermore, a rational methodology for the theoretical design of natural TRM composites is proposed. First-order analysis tools based on rule-of-mixtures and fracture mechanics concepts are considered. Based on the findings of this study, paths for future research are discussed.

2.
EMBO Mol Med ; 15(2): e16556, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36524456

ABSTRACT

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic form of familial small vessel disease; no preventive or curative therapy is available. CADASIL is caused by mutations in the NOTCH3 gene, resulting in a mutated NOTCH3 receptor, with aggregation of the NOTCH3 extracellular domain (ECD) around vascular smooth muscle cells. In this study, we have developed a novel active immunization therapy specifically targeting CADASIL-like aggregated NOTCH3 ECD. Immunizing CADASIL TgN3R182C150 mice with aggregates composed of CADASIL-R133C mutated and wild-type EGF1-5 repeats for a total of 4 months resulted in a marked reduction (38-48%) in NOTCH3 deposition around brain capillaries, increased microglia activation and lowered serum levels of NOTCH3 ECD. Active immunization did not impact body weight, general behavior, the number and integrity of vascular smooth muscle cells in the retina, neuronal survival, or inflammation or the renal system, suggesting that the therapy is tolerable. This is the first therapeutic study reporting a successful reduction of NOTCH3 accumulation in a CADASIL mouse model supporting further development towards clinical application for the benefit of CADASIL patients.


Subject(s)
CADASIL , Animals , Mice , Brain/metabolism , CADASIL/genetics , CADASIL/therapy , Capillaries/metabolism , Disease Models, Animal , Immunotherapy, Active , Mutation , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Receptors, Notch/metabolism
3.
Front Mol Biosci ; 9: 812808, 2022.
Article in English | MEDLINE | ID: mdl-35223989

ABSTRACT

CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is the most common familial form of stroke, which is caused by mutations located in the epidermal growth factor (EGF)-like repeats of the NOTCH3 gene. Mutations cause the NOTCH3 (N3) protein to misfold and aggregate. These aggregates will be a component of granular osmiophilic material, which when accumulated around the arteries and arterioles is believed to cause the degradation of vascular smooth muscle cells (VSMC). VSMC degradation affects blood flow regulation and leads to white matter and neuronal death. Currently, there is no treatment for CADASIL. The dementia-relevant BRICHOS domain is a small multitalented protein with functions that include ATP-independent chaperone-like properties. BRICHOS has been shown to prevent the aggregation of both fibrillar and non-fibrillar structures. Therefore, the objective of this study is to investigate whether BRICHOS exhibits anti-aggregating properties on a recombinant CADASIL-mutated N3 protein consisting of the first five repeats of EGF (EGF1-5), harboring a cysteine instead of an arginine in the position 133, (R133C). We found that the N3 EGF1-5 R133C mutant is more prone to aggregate, while the wildtype is more stable. Recombinant human Bri2 BRICHOS is able to interact and stabilize the R133C-mutated N3 protein in a dose-dependent manner. These results suggest an anti-aggregating impact of BRICHOS on the N3 EGF1-5 R133C protein, which could be a potential treatment for CADASIL.

4.
J Cell Mol Med ; 26(3): 880-892, 2022 02.
Article in English | MEDLINE | ID: mdl-34931449

ABSTRACT

The aggregation of ß-amyloid peptide 42 results in the formation of toxic oligomers and plaques, which plays a pivotal role in Alzheimer's disease pathogenesis. Aß42 is one of several Aß peptides, all of Aß30 to Aß43 that are produced as a result of γ-secretase-mediated regulated intramembrane proteolysis of the amyloid precursor protein. γ-Secretase modulators (GSMs) represent a promising class of Aß42-lowering anti-amyloidogenic compounds for the treatment of AD. Gamma-secretase modulators change the relative proportion of secreted Aß peptides, while sparing the γ-secretase-mediated processing event resulting in the release of the cytoplasmic APP intracellular domain. In this study, we have characterized how GSMs affect the γ-secretase cleavage of three γ-secretase substrates, E-cadherin, ephrin type A receptor 4 (EphA4) and ephrin type B receptor 2 (EphB2), which all are implicated in important contexts of cell signalling. By using a reporter gene assay, we demonstrate that the γ-secretase-dependent generation of EphA4 and EphB2 intracellular domains is unaffected by GSMs. We also show that γ-secretase processing of EphA4 and EphB2 results in the release of several Aß-like peptides, but that only the production of Aß-like proteins from EphA4 is modulated by GSMs, but with an order of magnitude lower potency as compared to Aß modulation. Collectively, these results suggest that GSMs are selective for γ-secretase-mediated Aß production.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Humans , Mutation
5.
Neurol Genet ; 7(3): e584, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33898742

ABSTRACT

OBJECTIVE: To conduct a clinical study of a family with neurologic symptoms and findings carrying a novel NOTCH3 mutation and to analyze the molecular consequences of the mutation. METHODS: We analyzed a family with complex neurologic symptoms by MRI and neurologic examinations. Exome sequencing of the NOTCH3 locus was conducted, and whole-genome sequencing was performed to identify COL4A1, COL4A2, and HTRA1 mutations. Cell lines expressing the normal or NOTCH3A1604T receptors were analyzed to assess proteolytic processing, cell morphology, receptor routing, and receptor signaling. RESULTS: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary form of cerebral small vessel disease (SVD) and caused by mutations in the NOTCH3 gene. Most CADASIL mutations alter the number of cysteine residues in the extracellular domain of the NOTCH3 receptor, but in this article, we describe a family in which some members carry a novel cysteine-sparing NOTCH3 mutation (c.4810 G>A, p.Ala1604Thr). Two of 3 siblings heterozygous for the NOTCH3A1604T mutation presented with migraine and white matter lesions (WMLs), the latter of a type related to but distinct from what is normally observed in CADASIL. Two other members instead carried a novel COL4A1 missense mutation (c.4795 G>A; p.(Ala1599Thr)). The NOTCH3A1604T receptor was aberrantly processed, showed reduced presence at the cell surface, and less efficiently activated Notch downstream target genes. CONCLUSIONS: We identify a family with migraine and WML in which some members carry a cysteine-sparing hypomorphic NOTCH3 mutation. Although a causal relationship is not established, we believe that the observations contribute to the discussion on dysregulated Notch signaling in cerebral SVDs.

6.
Dis Model Mech ; 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509954

ABSTRACT

Infantile myofibromatosis (IMF) is a benign tumor form characterized by the development of nonmetastatic tumors in skin, bone, muscle and sometimes viscera. Autosomal dominant forms of IMF are caused by mutations in the PDGFRB gene, but a family carrying a L1519P mutation in the NOTCH3 gene has also recently been identified. In this report, we address the molecular consequences of the NOTCH3L1519P mutation and the relationship between the NOTCH and PDGFRB signaling in IMF. The NOTCH3L1519P receptor generates enhanced downstream signaling in a ligand-independent manner. Despite the enhanced signaling, the NOTCH3L1519P receptor is absent from the cell surface and instead accumulates in the endoplasmic reticulum. Furthermore, the localization of the NOTCH3L1519P receptor in the bipartite, heterodimeric state is altered, combined with avid secretion of the mutated extracellular domain from the cell. Chloroquine treatment strongly reduces the amount of secreted NOTCH3L1519P extracellular domain and decreases signaling. Finally, NOTCH3L1519P upregulates PDGFRB expression in fibroblasts, supporting a functional link between Notch and PDGF dysregulation in IMF. Collectively, our data define a NOTCH3-PDGFRB axis in IMF, where an IMF-mutated NOTCH3 receptor elevates PDGFRB expression. The functional characterization of a ligand-independent gain-of-function NOTCH3 mutation is important for Notch therapy considerations for IMF, including strategies aimed at altering lysosome function.

7.
Environ Sci Pollut Res Int ; 26(5): 4521-4536, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29998445

ABSTRACT

In the present study, a multistage route is proposed for the treatment of biodiesel industry wastewater (BWW) containing around 1000 mg L-1 of total organic carbon (TOC), 3500 mg L-1 of chemical oxygen demand (COD), and 1325 mg L-1 of oil and grease. Initially, BWW aerobic biodegradability was assessed via Zhan-Wellens biodegradability test to confirm the appropriate treatment route. Then, a hybrid moving bed bioreactor (MBBR) system was chosen as the first treatment stage. The hybrid MBBR achieved 69 and 68% removal of COD and TOC removals, respectively, and provided great conditions for biomass growth. The bacterial community present in the hybrid MBBR was investigated by PCR-DGGE and potential biodegraders were identified such as: members of Desulfuromonadales, Nocardioidaceae and Pseudomonadaceae. Since biodegradation in the hybrid MBBR alone was unable to meet quality requirements, advanced oxidation processes, such as Fenton and photo-Fenton, were optimized for application as additional treatment stages. Physicochemical properties and acute toxicity of BWW were analyzed after the multistage routes: hybrid MBBR + Fenton, hybrid MBBR + photo-Fenton and hybrid MBBR + UV-C254nm/H2O2. Hybrid MBBR + Fenton or photo-Fenton showed overall COD removal efficiencies greater than 95% and removed acute toxicity, thus being appropriate integrated routes for the treatment of real BWW. Graphical abstract ᅟ.


Subject(s)
Biofuels/analysis , Bioreactors/microbiology , Microbiota , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Aliivibrio fischeri/drug effects , Biofuels/radiation effects , Biofuels/toxicity , Biological Oxygen Demand Analysis , Biomass , Hydrogen Peroxide/chemistry , Iron/chemistry , Models, Theoretical , Oxidation-Reduction , Toxicity Tests, Acute , Ultraviolet Rays , Water Pollutants, Chemical/radiation effects , Water Pollutants, Chemical/toxicity
8.
Nucleic Acids Res ; 46(D1): D788-D793, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29045725

ABSTRACT

Transcriptomic data have become a fundamental resource for stem cell (SC) biologists as well as for a wider research audience studying SC-related processes such as aging, embryonic development and prevalent diseases including cancer, diabetes and neurodegenerative diseases. Access and analysis of the growing amount of freely available transcriptomics datasets for SCs, however, are not trivial tasks. Here, we present StemMapper, a manually curated gene expression database and comprehensive resource for SC research, built on integrated data for different lineages of human and mouse SCs. It is based on careful selection, standardized processing and stringent quality control of relevant transcriptomics datasets to minimize artefacts, and includes currently over 960 transcriptomes covering a broad range of SC types. Each of the integrated datasets was individually inspected and manually curated. StemMapper's user-friendly interface enables fast querying, comparison, and interactive visualization of quality-controlled SC gene expression data in a comprehensive manner. A proof-of-principle analysis discovering novel putative astrocyte/neural SC lineage markers exemplifies the utility of the integrated data resource. We believe that StemMapper can open the way for new insights and advances in SC research by greatly simplifying the access and analysis of SC transcriptomic data. StemMapper is freely accessible at http://stemmapper.sysbiolab.eu.


Subject(s)
Cell Lineage , Databases, Genetic , Gene Expression , Stem Cells , Astrocytes/cytology , Data Collection , Data Curation , Datasets as Topic , Humans , Neural Stem Cells/cytology , Principal Component Analysis , Stem Cells/cytology , Stem Cells/metabolism , User-Computer Interface , Workflow
9.
Stem Cell Reports ; 7(6): 1037-1049, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27818139

ABSTRACT

The transcriptional regulator CITED2 is essential for heart development. Here, we investigated the role of CITED2 in the specification of cardiac cell fate from mouse embryonic stem cells (ESC). The overexpression of CITED2 in undifferentiated ESC was sufficient to promote cardiac cell emergence upon differentiation. Conversely, the depletion of Cited2 at the onset of differentiation resulted in a decline of ESC ability to generate cardiac cells. Moreover, loss of Cited2 expression impairs the expression of early mesoderm markers and cardiogenic transcription factors (Isl1, Gata4, Tbx5). The cardiogenic defects in Cited2-depleted cells were rescued by treatment with recombinant CITED2 protein. We showed that Cited2 expression is enriched in cardiac progenitors either derived from ESC or mouse embryonic hearts. Finally, we demonstrated that CITED2 and ISL1 proteins interact physically and cooperate to promote ESC differentiation toward cardiomyocytes. Collectively, our results show that Cited2 plays a pivotal role in cardiac commitment of ESC.


Subject(s)
Cell Differentiation , LIM-Homeodomain Proteins/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Repressor Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Cell Lineage , Gene Expression Regulation, Developmental , Humans , Mesoderm/metabolism , Mice , Protein Binding , Repressor Proteins/genetics , Trans-Activators/genetics
10.
BMC Microbiol ; 16(1): 111, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27316672

ABSTRACT

BACKGROUND: A large collection of sequenced mycobacteriophages capable of infecting a single host strain of Mycobacterium smegmatis shows considerable genomic diversity with dozens of distinctive types (clusters) and extensive variation within those sharing evident nucleotide sequence similarity. Here we profiled the mycobacterial components of a large composting system at the São Paulo zoo. RESULTS: We isolated and sequenced eight mycobacteriophages using Mycobacterium smegmatis mc(2)155 as a host. None of these eight phages infected any of mycobacterial strains isolated from the same materials. The phage isolates span considerable genomic diversity, including two phages (Barriga, Nhonho) related to Subcluster A1 phages, two Cluster B phages (Pops, Subcluster B1; Godines, Subcluster B2), three Subcluster F1 phages (Florinda, Girafales, and Quico), and Madruga, a relative of phage Patience with which it constitutes the new Cluster U. Interestingly, the two Subcluster A1 phages and the three Subcluster F1 phages have genomic relationships indicating relatively recent evolution within a geographically isolated niche in the composting system. CONCLUSIONS: We predict that composting systems such as those used to obtain these mycobacteriophages will be a rich source for the isolation of additional phages that will expand our view of bacteriophage diversity and evolution.


Subject(s)
Mycobacteriophages/genetics , Mycobacteriophages/isolation & purification , Mycobacterium/genetics , Mycobacterium/virology , Soil Microbiology , Soil , Bacteriophages/genetics , Base Sequence , Brazil , DNA, Bacterial/genetics , DNA, Viral/genetics , Evolution, Molecular , Genes, Bacterial , Genetic Variation , Genome, Viral , Multigene Family , Mycobacteriophages/classification , Mycobacterium/classification , Mycobacterium/isolation & purification , Mycobacterium smegmatis/classification , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/isolation & purification , Mycobacterium smegmatis/virology , Phylogeny
11.
Nucleic Acids Res ; 43(W1): W72-7, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26007653

ABSTRACT

Stem cells present unique regenerative abilities, offering great potential for treatment of prevalent pathologies such as diabetes, neurodegenerative and heart diseases. Various research groups dedicated significant effort to identify sets of genes-so-called stemness signatures-considered essential to define stem cells. However, their usage has been hindered by the lack of comprehensive resources and easy-to-use tools. For this we developed StemChecker, a novel stemness analysis tool, based on the curation of nearly fifty published stemness signatures defined by gene expression, RNAi screens, Transcription Factor (TF) binding sites, literature reviews and computational approaches. StemChecker allows researchers to explore the presence of stemness signatures in user-defined gene sets, without carrying-out lengthy literature curation or data processing. To assist in exploring underlying regulatory mechanisms, we collected over 80 target gene sets of TFs associated with pluri- or multipotency. StemChecker presents an intuitive graphical display, as well as detailed statistical results in table format, which helps revealing transcriptionally regulatory programs, indicating the putative involvement of stemness-associated processes in diseases like cancer. Overall, StemChecker substantially expands the available repertoire of online tools, designed to assist the stem cell biology, developmental biology, regenerative medicine and human disease research community. StemChecker is freely accessible at http://stemchecker.sysbiolab.eu.


Subject(s)
Software , Stem Cells/metabolism , Animals , Binding Sites , Cell Differentiation/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Humans , Internet , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , RNA Interference , Transcription Factors/metabolism
12.
Stem Cells ; 33(3): 699-712, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25377420

ABSTRACT

Identifying novel players of the pluripotency gene regulatory network centered on Oct4, Sox2, and Nanog as well as delineating the interactions within the complex network is key to understanding self-renewal and early cell fate commitment of embryonic stem cells (ESC). While overexpression of the transcriptional regulator Cited2 sustains ESC pluripotency, its role in ESC functions remains unclear. Here, we show that Cited2 is important for proliferation, survival, and self-renewal of mouse ESC. We position Cited2 within the pluripotency gene regulatory network by defining Nanog, Tbx3, and Klf4 as its direct targets. We also demonstrate that the defects caused by Cited2 depletion are, at least in part, rescued by Nanog constitutive expression. Finally, we demonstrate that Cited2 is required for and enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.


Subject(s)
Embryonic Stem Cells/physiology , Homeodomain Proteins/biosynthesis , Pluripotent Stem Cells/physiology , Repressor Proteins/deficiency , Trans-Activators/deficiency , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Regulatory Networks , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Kruppel-Like Factor 4 , Mice , Nanog Homeobox Protein , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transfection
13.
ScientificWorldJournal ; 2012: 765909, 2012.
Article in English | MEDLINE | ID: mdl-22666151

ABSTRACT

Nacre, when implanted in vivo in bones of dogs, sheep, mice, and humans, induces a biological response that includes integration and osteogenic activity on the host tissue that seems to be activated by a set of proteins present in the nacre water-soluble matrix (WSM). We describe here an experimental approach that can accurately identify the proteins present in the WSM of shell mollusk nacre. Four proteins (three gigasin-2 isoforms and a cystatin A2) were for the first time identified in WSM of Crassostrea gigas nacre using 2DE and LC-MS/MS for protein identification. These proteins are thought to be involved in bone remodeling processes and could be responsible for the biocompatibility shown between bone and nacre grafts. These results represent a contribution to the study of shell biomineralization process and opens new perspectives for the development of new nacre biomaterials for orthopedic applications.


Subject(s)
Crassostrea/metabolism , Osteogenesis/physiology , Proteins/chemistry , Proteomics , Water/chemistry , Animals , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Proteins/physiology , Solubility , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...