Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599827

ABSTRACT

Due the worldwide need to improve care for the environment and people, there is a great demand for the development of new renewable, sustainable, and less polluting technologies for food, health, and environmental industries. The marine environment is one of the main areas investigated in the search for alternatives to the raw materials currently used. Thereby, cyanobacteria and marine microalgae are microorganisms that are capable of producing a diverse range of metabolites useful for their cellular maintenance, but that also represent a great biotechnological potential. Due its great potential, they have an enormous appeal in the scientific research where, the biological activity of metabolites produced by these microorganisms, such as the antioxidant action of sterols are, some examples of biotechnological applications investigated around the world. Thereby, Brazil due to its extensive biodiversity, has high potential as a raw material supplier of marine waters, researching cyanobacteria and microalgae metabolites and their applications. Thus, this rapid review intends to present some important contributions and advances from Brazilian researchers, using the biomass of Brazilian cyanobacteria and marine microalgae, in order to illustrate the value of what has already been discovered and the enormous potential of what remains unexplored so far.


Subject(s)
Biotechnology/methods , Cyanobacteria , Microalgae , Aquatic Organisms , Biofuels , Brazil , Cyanobacteria/metabolism , Microalgae/metabolism , Pharmaceutical Preparations , Secondary Metabolism
2.
Molecules ; 24(12)2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31238580

ABSTRACT

The objective of this study, for the first time, was to optimize Amazonian cyanobacterial culture conditions for improving cell productivity and lipid content, by analyzing the effect of light intensity and nitrogen concentration, for empirically evaluating biodiesel quality parameters. The strains Synechocystis sp. CACIAM05, Microcystis aeruginosa CACIAM08, Pantanalinema rosaneae CACIAM18, and Limnothrix sp. CACIAM25, were previously identified by morphological and molecular analysis (16S rRNA) and were selected based on their production of chlorophyll a and dry cell weight. Then, factorial planning (22) with central points was applied, with light intensity and NaNO3 concentration as independent variables. As response variables, cell productivity and lipid content were determined. Statistical analysis indicated that for all strains, the independent variables were statistically significant for cell productivity. Analysis of the fatty acid composition demonstrated diversity in the composition of the fatty acid profile from the experimental planning assays of each strain. The Biodiesel Analyzer software predicted the biodiesel quality parameters. CACIAM05 and CACIAM25 obtained better parameters with low levels of light intensity and NaNO3 concentration, whereas CACIAM08 and CACIAM18 obtained better parameters with low NaNO3 concentrations and high luminous intensity.


Subject(s)
Biofuels , Cyanobacteria/metabolism , Cyanobacteria/radiation effects , Fermentation , Light , Nalidixic Acid/metabolism , Cyanobacteria/drug effects , Fatty Acids/metabolism , Nalidixic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...