Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38888220

ABSTRACT

The adaptive nature of the galler habit has been tentatively explained by the nutrition, microenvironment, and enemy hypotheses. Soil attributes have direct relationships with these three hypotheses at the cellular and macroecological scales, but their influence has been restricted previously to effects on the nutritional status of the host plant on gall richness and abundance. Herein, we discuss the ionome patterns within gall tissues and their significance for gall development, physiology, structure, and for the nutrition of the gallers. Previous ecological and chemical quantification focused extensively on nitrogen and carbon contents, evoking the carbon-nutrient defence hypothesis as an explanation for establishing the plant-gall interaction. Different elements are involved in cell wall composition dynamics, antioxidant activity, and regulation of plant-gall water dynamics. An overview of the different soil-plant-gall relationships highlights the complexity of the nutritional requirements of gallers, which are strongly influenced by environmental soil traits. Soil and plant chemical profiles interact to determine the outcome of plant-herbivore interactions and need to be addressed by considering not only the soil features and galler nutrition but also the host plant's physiological traits. The quantitative and qualitative results for iron metabolism in gall tissues, as well as the roles of iron as an essential element in the physiology and reproduction of gallers suggest that it may represent a key nutritional resource, aligning with the nutrition hypothesis, and providing an integrative explanation for higher gall diversity in iron-rich soils.

2.
Protoplasma ; 261(3): 513-525, 2024 May.
Article in English | MEDLINE | ID: mdl-38114665

ABSTRACT

The galls can offer shelter, protection, and an adequate diet for the gall-inducing organisms. Herein, we evaluated the structure of Manihot esculenta leaves and galls induced by Iatrophobia brasiliensis in order to identify metabolic and cell wall composition changes. We expected to find a complex gall with high primary metabolism in a typical nutritive tissue. Non-galled leaves and galls were subjected to anatomical, histochemical, and immunocytochemical analyses to evaluate the structural features, primary and secondary metabolites, and glycoproteins, pectins, and hemicelluloses in the cell wall. The gall is cylindric, with a uniseriate epidermis, a larval chamber, and a parenchymatic cortex divided into outer and inner compartments. The outer compartment has large cells with intercellular spaces and stocks starch and is designated as storage tissue. Reducing sugars, proteins, phenolic compounds, and alkaloids were detected in the protoplast of inner tissue cells of galls, named nutritive tissue, which presents five layers of compact small cells. Cell walls with esterified homogalacturonans (HGs) occurred in some cells of the galls indicating the continuous biosynthesis of HGs. For both non-galled leaves and galls, galactans and xyloglucans were broadly labeled on the cell walls, indicating a cell growth capacity and cell wall stiffness, respectively. The cell wall of the nutritive tissue had wide labeling for glycoproteins, HGs, heteroxylans, and xyloglucans, which can be used as source for the diet of the galling insect. Manihot esculenta galls have compartments specialized in the protection and feeding of the galling insect, structured by nutritive tissue rich in resource compounds, in the cell walls and protoplast.


Subject(s)
Diptera , Euphorbiaceae , Manihot , Phobic Disorders , Animals , Protoplasts , Glycoproteins/metabolism , Cell Wall , Plant Tumors , Plant Leaves/metabolism
3.
Protoplasma ; 260(5): 1287-1302, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36892633

ABSTRACT

Infection by the root-knot nematode (RKN), Meloidogyne incognita, impacts crop productivity worldwide, including parsley cultures (Petroselinum crispum). Meloidogyne infection involves a complex relationship between the pathogen and the host plant tissues, leading to the formation of galls and feeding sites that disorganize the vascular system, affecting the development of cultures. Herein, we sought to evaluate the impact of RKN on the agronomic traits, histology, and cell wall components of parsley, with emphasis on giant cell formation. The study consisted of two treatments: (i) control, where 50 individuals of parsley grew without M. incognita inoculation; and (ii) inoculated plants, where 50 individuals were exposed to juveniles (J2) of M. incognita. Meloidogyne incognita infection affected the development of parsley, reducing the growth of some agronomical characteristics such as root weight and shoot weight and height. Giant cell formation was noticed at 18 days after inoculation, promoting disorganization of the vascular system. Epitopes of HGs detected in giant cells reveal the continuous capacity of giant cells to elongate under the stimulus of RKN, essential processes for feeding site establishment. In addition, the detection of epitopes of HGs with low and high methyl-esterified groups indicates the PMEs activity despite biotic stress.


Subject(s)
Petroselinum , Tylenchoidea , Humans , Animals , Cell Wall
4.
Naturwissenschaften ; 109(1): 10, 2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34923603

ABSTRACT

In a general way, galling insects can induce only one gall morphotype on the host plant species. However, some taxa of galling insects such as Eriococcidae can induce sexually dimorphic galls on the same host. In the present study, Lopesia mataybae (Diptera: Cecidomyiidae) induced two gall morphotypes on the leaflets of Matayba guianensis (Sapindaceae), a rare evidence of sexual dimorphism in galls induced by Cecidomyiidae. We investigated the adult emergence of galling insects and the morphological, histological, and histochemical attributes of the gall morphotypes. Both gall morphotypes showed the galling insect in the larval or pupal stage, and the insect adult emergence from different morphotypes was sexually distinct. Galls occupied by females (Globoid) were significantly larger (average height = 4.67 mm. S = 0.43/average width = 4.59 mm. S = 0.70) than galls occupied by males (cylindrical) (average height = 2.95 mm. S = 0.46/average width = 2.34 mm. S = 0.45). Both gall types were composed of elongated cells in the inner cortex and rounded cells in the outer cortex of the vessel-like structure. The globoid galls showed 42 cell layers (14 of them cylindrical, S = 3.86; 28 rounded, S = 5.89) and cylindrical galls showed 29 layers. There were no differences between morphotypes in the histochemical compounds detected. We have shown here significant morphological and histological differences between male and female galls possibly due to the different nutritional requirements of Lopesia mataybae sexes. Therefore, the expression of sexual dimorphism in gall morphotypes may be associated with developmental pathway differentiation between the sexes of L. mataybae.


Subject(s)
Diptera , Sapindaceae , Animals , Female , Male
5.
Naturwissenschaften ; 108(3): 16, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33871712

ABSTRACT

The development of plant organs depends on cell division, elongation, structural and chemical changes, and reorganization of cell wall components. As phenotype manipulators, galling insects can manipulate the structure and metabolism of host tissues to build the gall. The gall formation depends on the rearrangement of cell wall components to allow cell growth and elongation, key step for the knowledge regarding gall development, and shape acquisition. Herein, we used an immunocytochemical approach to investigate the chemical composition of the cell wall during the development of galls induced by Bystracoccus mataybae (Eriococcidae) on leaflets of Matayba guianensis (Sapindaceae). Different developmental stages of non-galled leaflets (n = 10) and of leaflet galls (n = 10) were collected from the Cerrado (Brazilian savanna) for anatomical and immunocytochemical analysis. We found that the epitopes of (1 → 4) ß-D-galactans and (1 → 5) α-L-arabinans were evident in the tissues of the young and senescent galls. These epitopes seem to be associated with the mechanical stability maintenance and increased gall porosity. As well, the degree of methyl-esterification of pectins changed from the young to the senescent galls and revealed the conservation of juvenile cell and tissue features even in the senescent galls. The extensins detected in senescent galls seem to support their rigidity and structural reinforcement of these bodies. Our results showed a disruption in the pattern of deposition of leaflet cell wall for the construction of M. guianensis galls, with pectin and protein modulation associated with the change of the developmental gall stages.


Subject(s)
Cell Wall/chemistry , Immunohistochemistry , Plant Tumors , Sapindaceae/cytology
6.
Protoplasma ; 258(5): 979-990, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33532872

ABSTRACT

Root-knot nematodes are endoparasites whose mature females lodge and grow inside the root of some cultivated plants, leading to losses in productivity. Herein, we investigated if the infection of okra, Abelmoschus esculentus (Malvaceae), promoted by the root-knot nematode Meloidogyne incognita (Meloidogynidae) changes some agronomic traits of the host plant, as well as the cell wall composition of the root tissues. The okra Santa Cruz 47® cultivar was infected with a suspension of 5000 M. incognita juveniles. The inoculated and non-inoculated okra plants were then submitted to morphological analysis at the end of experiment, as well as histological (at 4, 11, 18, 39, ad 66 days after inoculation) and immunocytochemical analysis (control and 66 days after inoculation). Root-knot nematode infection reduced the dry weight of the stem system but, unexpectedly, the number and weight of fruits increased. At 11 days after inoculation, we detected the presence of giant cells that increased in number and size until the end of the experiment, at 66 days after inoculation. These cells came from the xylem parenchyma and showed intense and moderate labeling for epitopes recognized by JIM5 and JIM7. The presence of homogalacturonans (HGs) with different degrees of methyl esterification seems to be related to the injuries caused by the nematode feeding activity and to the processes of giant cell hypertrophy. In addition, the presence of HGs with high methyl-esterified groups can increase the cell wall porosity and facilitate the flux of nutrients for the root-knot nematode.


Subject(s)
Abelmoschus , Malvaceae , Tylenchoidea , Animals , Cell Wall , Plant Diseases , Plant Roots
7.
Protoplasma ; 257(1): 103-118, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31402407

ABSTRACT

The chemical composition of the cell walls strongly affects water permeability and storage in root tissues. Since epiphytic orchids live in a habitat with a highly fluctuating water supply, the root cell walls are functionally important. In the present study, we used histochemistry and immunocytochemistry techniques in order to determine the composition of the cell walls of root tissues of 18 epiphytic species belonging to seven subtribes across the Orchidaceae. The impregnation of lignin in the velamen cells reinforces its function as mechanical support and can facilitate apoplastic flow. Pectins, as well cellulose and lignins, are also essential for the stability and mechanical support of velamen cells. The exodermis and endodermis possess a suberinized lamella and often lignified walls that function as selective barriers to apoplastic flow. Various cortical parenchyma secondary wall thickenings, including phi, reticulated, and uniform, prevent the cortex from collapsing during periods of desiccation. The presence of highly methyl-esterified pectins in the cortical parenchyma facilitates the formation of gels, causing wall loosening and increased porosity, which contributes to water storage and solute transport between cells. Finally, cells with lipid or lignin impregnation in the cortical parenchyma could increase the water flow towards the stele.


Subject(s)
Cell Wall/chemistry , Orchidaceae/chemistry , Orchidaceae/cytology , Plant Roots/chemistry , Lignin/metabolism , Lipids/chemistry , Pectins/metabolism
8.
Plant Signal Behav ; 14(11): 1665454, 2019.
Article in English | MEDLINE | ID: mdl-31538533

ABSTRACT

The galling insect manipulates the host plant tissue to its own benefit, building the gall structure where it spends during most of its life cycle. These specialist herbivore insects can induce and manipulate plant structure and metabolism throughout gall development and may affect plant volatile emission. Consequently, volatile emission from altered metabolism contribute to eavesdropping cueing. Eavesdropping can be part of adaptive strategies used by evolution for both galling insects and the entire-associated community in order to cue some interaction response. This is in contrast to some herbivores associated with delayed induced responses, altering plant metabolites during the short time while they feed. Due to the different lifestyles of the galling organism, which are associated with different plant tissues and organs (e.g leaves, flowers or fruits), a distinct diversity of organisms may eavesdrop on induced volatiles interacting with the galls. Furthermore, the eavesdropping cues may be defined according to the phenological coupling between galling organism and host plant, which results from the development of a gall structure. For instance, when plants release volatile-induced defenses after galling insects' activity, another interactor may perceive these volatiles and change its behavior and interactions with host plants and galls. Thus, natural enemies could be attracted by different volatiles emitted by the gall tissues. Considering the duration of the life cycle of the galling organism and the gall, the temporal extent of gall-induced volatiles may include more persistent volatile cues and eavesdropping effects than the volatiles induced by non-galling herbivores. Accordingly, from chemical ecology perspective we expect that galling herbivore-induced volatiles may exhibit robust effects on neighboring-plant interactions including those ones during different plant developmental or phenological periods. Information about multitrophic interactions between insects and plants supports the additional understanding of direct and indirect effects, and allows insight into new hypotheses.


Subject(s)
Plant Tumors , Signal Transduction , Volatile Organic Compounds/metabolism , Herbivory/physiology , Host-Parasite Interactions
9.
Rev. biol. trop ; 66(4): 1469-1480, oct.-dic. 2018. tab, graf
Article in English | LILACS | ID: biblio-1003338

ABSTRACT

Abstract Gall-inducing insects manipulate the structural, histochemical and physiological profiles of host-plant tissues to develop galls. We evaluated galls induced by Eugeniamyia dispar on the leaves of Eugenia uniflora in an attempt to answer the following questions: (i) How does this gall-inducing insect change the structural and histochemical profiles of the host-plant organ? (ii) Despite structural changes, can gall tissues maintain photosynthetic activity? Starch, proteins, reducing sugars and reactive oxygen species were detected mainly in the nutritive tissue surrounding the larval chamber. Despite structural changes, the galls induced by E. dispar on E. uniflora retain chlorophyllous tissue, although its amount and photosynthetic activity are less than that of non-galled leaves. This reduced photosynthetic activity, in association with the presence of large intercellular spaces, could improve gas diffusion and, consequently, avoid hypoxia and hypercarbia in gall tissue.(AU)


Resumen Los insectos que inducen las agallas manipulan los perfiles estructurales, histoquímicos y fisiológicos de los tejidos de la planta hospedera para su desarrollo. Nosotros evaluamos las agallas inducidas por Eugeniamyia dispar en las hojas de Eugenia uniflora en un intento de responder las siguientes preguntas: (i) ¿Cómo este insecto inductor de agallas cambia los perfiles estructurales e histoquímicos en el órgano de la planta hospedera? (ii) A pesar de las modificaciones estructurales, ¿pueden los tejidos de la agalla mantener la actividad fotosintética? El almidón, las proteínas, los azúcares reductores y las especies reactivas de oxígeno se detectaron principalmente en la capa de tejido nutritivo que rodea a la cavidad larval. A pesar de las modificaciones estructurales, las agallas inducidas por E. dispar en E. uniflora retienen su tejido clorofílico, aunque su cantidad y actividad fotosintética son menores que en las hojas no agalladas. Esta actividad fotosintética reducida, asociado a la presencia de grandes espacios intercelulares, pueden mejorar la difusión de gases y, en consecuencia, evitar la hipoxia y la hipercapnia en los tejidos de las agallas.(AU)


Subject(s)
Photosynthesis , Diptera , Eugenia , Chlorophyll A , Hypoxia
10.
Biochim Biophys Acta ; 1850(8): 1509-17, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25813551

ABSTRACT

BACKGROUND: Galls have specialized tissues for the protection and nutrition of the inducers, and these tissues have been studied from the developmental and histochemical perspectives. Recently, the role of oxidative stress in galls has been tested histochemically through detection of H2O2 in gall tissues. SCOPE OF REVIEW: Developmental processes and cytological events are revisited from the perspective of the redox-potential balance in both the apoplast and symplast, especially concerning the accumulation of reactive oxygen species (ROS). MAJOR CONCLUSIONS: The redox potential is imbalanced differently in the apoplast and symplast at gall sites, with the apoplast having lower antioxidant-buffering capacity than the symplast. The strategies to recover redox-potential homeostasis involve the dissipation of ROS by scavenging molecules, such as phenolics, flavonoid derivatives, tocopherol, and enzyme systems. GENERAL SIGNIFICANCE: Insect galls are good models to test developmental hypotheses. Although the exact mechanisms of gall induction and development have not been elucidated at the biochemical and biophysical levels, modulation of the redox potential is involved in the crucial steps of gall initiation and establishment. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.


Subject(s)
Arthropods/physiology , Homeostasis , Plant Tumors/parasitology , Plants/metabolism , Animals , Host-Parasite Interactions , Hydrogen Peroxide/metabolism , Models, Biological , Oxidation-Reduction , Plants/parasitology , Reactive Oxygen Species/metabolism
11.
Biosci. j. (Online) ; 31(2): 591-600, mar./abr. 2015.
Article in Portuguese | LILACS | ID: biblio-964116

ABSTRACT

O fogo exerce um papel importante como modelador dos ecossistemas de diversas formações vegetais, especialmente o Cerrado. Sua ação induz a brotação em diversas espécies, muitas vezes formando folhas mais vigorosas e fisiologicamente mais ativas. Nesse contexto, o presente trabalho investigou o desempenho fotossintético de folhas jovens e maduras de Vochysia cinnamomea Pohl (Vochysiaceae) em resposta à ação do fogo natural sobre uma área de cerrado rupestre da Serra da Canastra, Minas Gerais, comparando-se; (1) folhas jovens de área queimada e não queimada e (2) folhas jovens e maduras de um mesmo indivíduo. Foram analisadas folhas maduras de indivíduos de área não queimada cuja brotação ocorreu anterior à queimada, e folhas jovens de indivíduos de áreas queimadas e não queimadas cuja brotação ocorreu após a passagem do fogo. Foram coletados e analisados dados relativos às taxas fotossintéticas, rendimento quântico potencial e efetivo, taxa relativa de transporte de elétrons, assimilação líquida de CO2, condutância estomática, transpiração e teores de clorofila. Não houve diferenças significativas entre as folhas jovens da área queimada e da área não queimada em relação aos processos fisiológicos testados. Desta forma não há nenhum tipo de resposta rápida em relação à passagem do fogo. Entretanto, foram encontradas diferenças significativas quando comparadas folhas jovens e maduras. É fato que folhas jovens de V. cinnamomea são estruturalmente distintas de folhas maduras, são mais suculentas e pilosas enquanto as folhas maduras são mais coriáceas, glabras e com cutícula evidente. Estas diferenças estruturais e os estágios fisiológicos de maturação distintos se refletem nas características fisiológicas estudadas nestas folhas que, quando maduras apresentam-se com menor grau de fotoinibição, maior teor de clorofilas e maior assimilação líquida de CO2.


Post-fire effect plays an important role as a modulator of plant ecosystems, especially of the Cerrado. It induces leaf sprouting in several species, often forming vigorous and more physiologically active leaves. In the present study it was investigated the photosynthetic performance of young and mature leaves of Vochysia cinnamomea Pohl (Vochysiaceae) in response to the fire action in a "cerrado rupestre" area of Serra da Canasta, Minas Gerais, comparing; (1) young leaves from fired and intact area, and (2) young and mature leaves from the same plant. Mature leaves from intact area plants which leaf sprouting occurred before fire action in the adjacent area, and young leaves from intact and fired area which leaf sprouting occurred after fire action were analyzed. Data were collected and analyzed on photosynthetic rates, potential and effective quantum yield, electron transport rate, CO2 assimilation, stomatal conductance, transpiration and chlorophyll contents. There were no significant differences between the young leaves of the burned and unburned area in relation to physiological parameters tested. Thus there is no kind of quick response in relation to fire effects. However, significant differences between young and mature leaves were found. Young leaves are structurally distinct of the mature leaves, been more succulent and pilous while mature leaves are more coriaceous, glabrous and with thicked cuticle. The structural differences between young and mature leaves are reflected in distinct physiological performance. Mature leaves present lower degree of photoinhibition, higher pigment content and CO2 assimilation.


Subject(s)
Photosynthesis , Chlorophyll , Plant Leaves , Grassland , Electron Transport , Fires , Ecosystem
12.
Biosci. j. (Online) ; 30(6): 1933-1941, nov./dec. 2014. ilus, tab
Article in English | LILACS | ID: biblio-948541

ABSTRACT

Jatropha curcas (Euphorbiaceae) is an evergreen tree traditionally used in popular medicine, and also as a promising source for bio-fuel production. The in vitro propagation of this species has been studied as an alternative to conventional methods such as cutting and seedling. In vitro culture environment consists on closed flasks, with high relative humidity, reduced gas exchanges and artificial temperature and luminosity conditions. These conditions may induce physiological and anatomical alterations in cultivated plants. The occurrence of anatomical alterations on the leaves of J. curcas was examined in plants cultivated both in vitro and ex vitro, under greenhouse conditions. The stomatal index was higher on the leaves from greenhouse plants. Mesophyll thickness did not differ, but the greenhouse leaves presented an additional palisade layer, which reflects the environmental influence on cell division. The cells of the chlorophyllous parenchyma of young plants grown in greenhouse conditions have larger chloroplasts than those of the plants grown in vitro. The chloroplasts of mature leaves are similar in height, but the mitochondria are smaller. Current results indicate that the leaves of J. curcas respond distinctly to both environments. It is necessary to adjust the abiotic conditions in vitro to avoid precocious senescence, diagnosed by chloroplasts and mesophyll degradation.


Jatropha curcas (Euphorbiaceae) é uma espécie arbórea sempre-verde usada tradicionalmente na medicina popular e com potencial para produção de biodiesel. A propagação in vitro desta espécie tem sido avaliada como alternativa aos meios convencionais de estaquia e plantio. O ambiente in vitro consiste em frascos de vidro fechados, com umidade relativa elevada, trocas gasosas reduzidas, e condições artificialmente controladas de temperatura e luminosidade. Tais condições podem induzir anormalidades fisiológicas e anatômicas nas plantas cultivadas. A ocorrência de alterações anatômicas foi avaliada em folhas de J. curcas cultivadas in vitro e em casa de vegetação visando diagnosticar os efeitos do ambiente in vitro sobre o desenvolvimento das plantas. O índice estomático foi maior nas folhas de plantas crescidas em casa de vegetação. A espessura do mesofilo não apresentou alterações, mas as folhas das plantas crescidas em casa de vegetação apresentaram uma camada adicional de parênquima paliçádico. Citologicamente, as células do parênquima clorofiliano de plantas jovens crescidas em casa de vegetação possuem cloroplastos maiores do que aqueles das plantas crescidas in vitro. Nas plantas maduras, os cloroplastos apresentam tamanhos similares. As mitocôndrias possuem tamanhos reduzidos nas plantas maduras ex vitro. Nossos resultados mostram que as folhas de J. curcas respondem distintamente aos dois ambientes. Ajustes nas condições abióticas in vitro são necessários para evitar a senescência precoce, diagnosticada pela desintegração dos cloroplastos e consequentemente do mesofilo. Current results indicate that the leaves of J. curcas respond distinctly to both environments. It is necessary to adjust the abiotic conditions in vitro to avoid precocious senescence, diagnosed by chloroplasts and consequent mesophyll degradation.


Subject(s)
In Vitro Techniques , Euphorbiaceae , Jatropha , Biofuels
13.
Biosci. j. (Online) ; 30(4): 1241-1251, july/aug. 2014. ilus
Article in Portuguese | LILACS | ID: biblio-967561

ABSTRACT

A ontogênese foliar associada a análises histométricas podem fornecer respostas conclusivas sobre a obtenção da forma da folha, assim como detalhes estruturais que podem ser usados como subsídio taxonômico para Melastomataceae. Assim, o objetivo deste estudo foi descrever a ontogenia foliar de Lavoisiera mucorifera, elucidando os processos de origem e desenvolvimento dos tecidos e formato das folhas. Folhas de diferentes estágios de desenvolvimento foram coletadas e processadas conforme técnicas usuais em anatomia vegetal. No primeiro nó nota-se a origem da lâmina a partir dos meristemas marginais e submarginais, bem como diferenças nos processos de divisão e expansão celular nas regiões mediana e apical, que proporcionam o formato lanceolado da folha. A partir do segundo nó observa-se que o sistema fundamental origina-se a partir das camadas adaxial, mediana e abaxial do mesofilo. Nos terceiro e quarto nós observa-se principalmente a formação de nervuras de terceira e quarta ordens. A partir do quinto nó, os tecidos estão completamente diferenciados sendo observados os caracteres: folhas isolaterais, cutícula espessa, epiderme unisseriada, estômatos anomocíticos, além de drusas e células esclerênquimáticas no mesofilo. Nossos resultados complementam os poucos estudos anatômicos na família, especialmente ao descrever a morfologia e desenvolvimento das emergências e tricomas.


The leaf ontogenesis associated to histometric analyzes can provide conclusive answers about the leaf shape formation, as well structural details that could be used as taxonomic subsidy in Melastomataceae. Our purpose was to describe the leaf ontogenesis of Lavoisiera mucorifera, and the processes cell elongation in leaf shape formation. Leaves of different developmental stages were collected and processed according to usual techniques in plant anatomy. At first nodethe origin of the leaf lamina from the sub-marginal and marginal meristems as well as differences in the processes of cell division and expansion in the middle and apical providing the format lanceolate leaf shape. At second node is observed that the ground system develops from adaxial, abaxial and median layers. At third and fourth nodes is observed mainly the vein ramification. From the fifth node the tissues are completely differentiated being observed characters like isobilateral leaves, thick cuticle, uniseriate epidermis, anomocytic stomata and druse e sclerenchymatic cells in the mesophyll. Our results also complement the few anatomical studies the family to describe the morphology and development of trichomes and emergences.


Subject(s)
Melastomataceae , Plant Development , Trichomes
14.
PLoS One ; 9(4): e94588, 2014.
Article in English | MEDLINE | ID: mdl-24747777

ABSTRACT

Insect galls may be study models to test the distribution of pectins and arabinogalactan-proteins (AGPs) and their related functions during plant cell cycles. These molecules are herein histochemically and immunocitochemically investigated in the kidney-shaped gall induced by Baccharopelma dracunculifoliae (Psyllidae) on leaves of Baccharis dracunculifolia DC. (Asteraceae) on developmental basis. The homogalacturonans (HGAs) (labeled by JIM5) and the arabinans (labeled by LM6) were detected either in non-galled leaves or in young galls, and indicated stiffening of epidermal cell walls, which is an important step for cell redifferentiation. The labeling of HGAs by JIM7 changed from young to senescent stage, with an increase in the rigidity of cell walls, which is important for the acquaintance of the final gall shape and for the mechanical opening of the gall. The variation on the degree of HGAs during gall development indicated differential PMEs activity during gall development. The epitopes recognized by LM2 (AGP glycan) and LM5 (1-4-ß-D-galactans) had poor alterations from non-galled leaves towards gall maturation and senescence. Moreover, the dynamics of pectin and AGPs on two comparable mature kidney-shaped galls on B. dracunculifolia and on B. reticularia revealed specific peculiarities. Our results indicate that similar gall morphotypes in cogeneric host species may present distinct cell responses in the subcelular level, and also corroborate the functions proposed in literature for HGAs.


Subject(s)
Baccharis/metabolism , Pectins/metabolism , Plant Tumors , Baccharis/cytology , Epitopes/immunology , Esterification , Pectins/immunology , Plant Leaves/cytology , Plant Leaves/metabolism
15.
Protoplasma ; 251(4): 747-53, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24213017

ABSTRACT

Cell redifferentiation, division, and elongation are recurrent processes, which occur during gall development, and are dependent on the cellulose microfibrils reorientation. We hypothesized that changes in the microfibrils orientation from non-galled tissues to galled ones occur and determine the final gall shape. This determination is caused by a new tissue zonation, its hyperplasia, and relative cell hypertrophy. The impact of the insect's activity on these patterns of cell development was herein tested in Baccharopelma dracunculifoliae-Baccharis dracunculifolia system. In this system, the microfibrils are oriented perpendicularly to the longest cell axis in elongated cells and randomly in isodiametric ones, either in non-galled or in galled tissues. The isodiametric cells of the abaxial epidermis in non-galled tissues divided and elongated periclinally, forming the outer gall epidermis. The anticlinally elongated cells of the abaxial palisade layer and the isodiametric cells of the spongy parenchyma originated the gall outer cortex with hypertrophied and periclinally elongated cells. The anticlinally elongated cells of the adaxial palisade layer originated the inner cortex with hypertrophied and periclinally elongated cells in young and mature galls and isodiametric cells in senescent galls. The isodiametric cells of the adaxial epidermis elongated periclinally in the inner gall epidermis. The current investigation demonstrates the role of cellulose microfibril reorientation for gall development. Once many factors other than this reorientation act on gall development, it should be interesting to check the possible relationship of the new cell elongation patterns with the pectic composition of the cell walls.


Subject(s)
Baccharis/cytology , Plant Tumors , Baccharis/metabolism , Cell Differentiation , Cell Division , Plant Leaves/cytology , Plant Leaves/metabolism
16.
Protoplasma ; 250(6): 1363-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23779213

ABSTRACT

Insect galls may present nutritive tissues with distinct cytological features related to the order of the gall inducer. Galling Lepidoptera larvae chew plant cells and induce the redifferentiation of parenchymatic cells into nutritive ones. The nutritive cells in the galls induced by a microlepidoptera on the leaves of Tibouchina pulchra (Cham.) Cogn. (Melastomataceae) are organelle-rich, with developed Golgi apparatus, endoplasmic reticulum, ribosomes, polyribosomes, mitochondria, plastids, and one great central or several fragmented vacuoles. The nonobservance of the nuclei in the nutritive cells deserves special attention, and confers a similarity between the nutritive cells and the vascular conductive ones. The great amount of rough endoplasmic reticulum, ribosomes, polyribosomes, and mitochondria is indicative of the high metabolic status of these cells. They are vascular cambium-like, with high protein synthesis and lipid storage. The proteins are essential to enzymatic metabolism, and secondarily, to larvae nutrition, similarly to the lipid droplets which confer energetic profile to these nutritive cells. The living enucleated cells receive mRNA from their neighbor ones, which may support the high metabolic profile of endoplasmic reticulum and ribosomes observed in galls. Thus, the nutritive cells are stimulated by the galling larvae activity, generating a new cell type, whose redifferentiation includes a mix of intrinsic and common plant pathways.


Subject(s)
Cell Differentiation , Lepidoptera/physiology , Melastomataceae/cytology , Melastomataceae/parasitology , Plant Development , Plant Tumors/parasitology , Animals , Melastomataceae/growth & development , Plant Leaves/cytology , Plant Leaves/parasitology , Plant Leaves/ultrastructure
17.
Protoplasma ; 250(4): 899-908, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23255001

ABSTRACT

The pectic composition of cell wall is altered during the processes of cell differentiation, plant growth, and development. These alterations may be time-dependent, and fluctuate in distinct regions of the same cell or tissue layer, due to the biotic stress caused by the activity of the gall inducer. Among the roles of the pectins in cell wall, elasticity, rigidity, porosity, and control of cell death may be crucial during gall development. Galls on Baccharis reticularia present species-specific patterns of development leading to related morphotypes where pectins were widely detected by Ruthenium red, and the pectic epitopes were labeled with specific monoclonal antibodies (LM1, LM2, LM5, LM6, JIM5, and JIM7) in distinct sites of the non-galled and the galled tissues. In the studied system B. reticularia, the epitopes for extensins were not labeled in the non-galled tissues, as well as in those of the rolling and kidney-shaped galls. The high methyl-esterified homogalacturonans (HGA) were labeled all over the tissues either of non-galled leaves or of the three gall morphotypes, while the intense labeling for arabinogalactans was obtained just in the rolling galls. The pectic composition of non-galled leaves denotes their maturity. The kidney-shaped gall was the most similar to the non-galled leaves. The pectic dynamics in the gall tissues was particularly altered in relation to low methyl-esterified HGA, which confers elasticity and expansion, as well as porosity and adhesion to cell walls, and are related to the homogenization and hypertrophy of gall cortex, and to translocation of solutes to the larval chamber. Herein, the importance of the pectic dynamics of cell walls to the new functional design established during gall development is discussed for the first time. The repetitive developmental patterns in galls are elegant models for studies on cell differentiation.


Subject(s)
Asteraceae/metabolism , Baccharis/metabolism , Pectins/metabolism , Cell Wall/metabolism , Immunohistochemistry , Plant Leaves/metabolism
18.
Plant Sci ; 180(3): 489-95, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21421396

ABSTRACT

The generation of ROS (reactive oxygen species) in plant galls may induce the degradation of the membrane systems of a plant cell and increase the number of plastoglobules. This numerical increase has been related to the prevention of damage to the thylakoid systems, and to the maintenance of photosynthesis rates. To investigate this hypothesis in gall systems, a comparative study of the ultrastructure of chloroplasts in non-galled leaves and in leaf galls of A. australe and A. spruceanum was conducted. Also, the pigment composition and the photosynthetic performance as estimated by chlorophyll fluorescence measurements were evaluated. The ultrastructural analyses revealed an increase in the number and size of plastoglobules in galls of both species studied. The levels of total chlorophylls and carotenoids were lower in galls than in non-galled tissues. The chlorophyll a/b ratio did not differ between the non-galled tissues and both kinds of galls. The values of maximum electron transport rate (ETR(MAX)) were similar for all the samples. The occurrence of numerous large plastoglobules in the galled tissues seemed to be related to oxidative stress and to the recovery of the thylakoid membrane systems. The maintenance of the ETR(MAX) values indicated the existence of an efficient strategy to maintain similar photosynthetic rates in galled and non-galled tissues.


Subject(s)
Aspidosperma/metabolism , Chloroplasts/metabolism , Lipoproteins/metabolism , Oxidative Stress , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Tumors , Aspidosperma/ultrastructure , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll A , Chloroplasts/ultrastructure , Electron Transport/physiology , Fluorescence , Plant Leaves/ultrastructure , Plant Proteins/metabolism , Reactive Oxygen Species , Thylakoids
19.
Protoplasma ; 248(4): 829-37, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21207084

ABSTRACT

Previous ultrastructural and histochemical analysis proposed patterns in the accumulation of substances in galls of Diptera: Cecidomyiidae in some plant species of the temperate region. Similar analyses were done to verify the conservativeness of these patterns in the Neotropical region, where a great number of species of Cecidomyiidae is responsible for a wide diversity of morphotypes. Two gall morphotypes induced by Cecidomyiidae in a unique host plant, Copaifera langsdorffii, were studied. The gradients of carbohydrates and the activity of invertases and acid phosphatases were similar, but the cytological gradients and distribution of proteins evidenced that the sites of the induction as well as the amount of neoformed tissues may be peculiar to each gall system. The production of lipids just in the secretory cavities either in the non-galled or galled tissues indicated a potentiality of the host plant which could not be manipulated by the galling insects. Further, the absence of nucleus in the nutritive tissue, an exclusive feature of the horn-shaped galls, indicates cell death attributed to the feeding habit of the galling herbivore.


Subject(s)
Diptera/pathogenicity , Fabaceae/anatomy & histology , Fabaceae/cytology , Plant Tumors/parasitology , Acid Phosphatase/metabolism , Animals , Cell Nucleus/metabolism , Enzyme Activation , Fabaceae/metabolism , Fabaceae/parasitology , Herbivory , Mesophyll Cells/metabolism , Mesophyll Cells/ultrastructure , Microscopy, Electron, Transmission , Plant Leaves/metabolism , Plant Leaves/parasitology , Plant Leaves/ultrastructure , beta-Fructofuranosidase/metabolism
20.
Protoplasma ; 242(1-4): 81-93, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20306094

ABSTRACT

Cecidomyiidae galls commonly present a zonation of tissues with lignified cell layers externally limiting a reserve tissue and internally limiting a specialized nutritive tissue next to the larval chamber. The cytological aspects of this specialized tissue indicate high metabolic activity as well as carbohydrate accumulation. In Aspidosperma spruceanum-Cecidomyiidae gall system, ultrastructural and histochemical investigations corroborated this pattern and also revealed the storage of proteins in the nutritive cells. Reactive oxygen species (ROS), callose, and pectin accumulation were related to the feeding activity of the galling herbivore. Phosphorylase, glucose-6-phosphatase, acid phosphatases, invertases, and sucrose synthase activities were detected for the first time, in the Neotropical region, and discussed in relation to gall maintenance and the feeding activity of the Cecidomyiidae.


Subject(s)
Apocynaceae/cytology , Apocynaceae/parasitology , Diptera/physiology , Plant Tumors/parasitology , Animals , Apocynaceae/ultrastructure , Immunohistochemistry , Larva/metabolism , Plant Leaves/cytology , Plant Leaves/metabolism , Plant Leaves/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...