Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Microb Cell Fact ; 23(1): 51, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355518

ABSTRACT

BACKGROUND: In hematologic cancers, including leukemia, cells depend on amino acids for rapid growth. Anti-metabolites that prevent their synthesis or promote their degradation are considered potential cancer treatment agents. Amino acid deprivation triggers proliferation inhibition, autophagy, and programmed cell death. L-lysine, an essential amino acid, is required for tumor growth and has been investigated for its potential as a target for cancer treatment. L-lysine α-oxidase, a flavoenzyme that degrades L-lysine, has been studied for its ability to induce apoptosis and prevent cancer cell proliferation. In this study, we describe the use of L-lysine α-oxidase (LO) from the filamentous fungus Trichoderma harzianum for cancer treatment. RESULTS: The study identified and characterized a novel LO from T. harzianum and demonstrated that the recombinant protein (rLO) has potent and selective cytotoxic effects on leukemic cells by triggering the apoptotic cascade through mitochondrial dysfunction. CONCLUSIONS: The results support future translational studies using the recombinant LO as a potential drug for the treatment of leukemia.


Subject(s)
Hypocreales , Leukemia , Neoplasms , Trichoderma , Humans , Lysine , Apoptosis , Leukemia/drug therapy , Necrosis
2.
J Mol Med (Berl) ; 100(1): 65-76, 2022 01.
Article in English | MEDLINE | ID: mdl-34643765

ABSTRACT

Crotamine is a rattlesnake-derived toxin that causes fast-twitch muscle paralysis. As a cell-penetrating polypeptide, crotamine has been investigated as an experimental anti-cancer and immunotherapeutic agent. We hypothesized that molecules targeting crotamine could be designed to study its function and intervene in its adverse activities. Here, we characterize synthetic crotamine and show that, like the venom-purified toxin, it induces hindlimb muscle paralysis by affecting muscle contraction and inhibits KCNA3 (Kv1.3) channels. Synthetic crotamine, labeled with a fluorophore, displayed cell penetration, subcellular myofiber distribution, ability to induce myonecrosis, and bind to DNA and heparin. Here, we used this functionally validated synthetic polypeptide to screen a combinatorial phage display library for crotamine-binding cyclic peptides. Selection for tryptophan-rich peptides was observed, binding of which to crotamine was confirmed by ELISA and gel shift assays. One of the peptides (CVWSFWGMYC), synthesized chemically, was shown to bind both synthetic and natural crotamine and to block crotamine-DNA binding. In summary, our study establishes a functional synthetic substitute to the venom-derived toxin and identifies peptides that could further be developed as probes to target crotamine. KEY MESSAGES: Synthetic crotamine was characterized as a functional substitute for venom-derived crotamine based on myotoxic effects. A combinatorial peptide library was screened for crotamine-binding peptides. Tryptophan-rich peptides were shown to bind to crotamine and interfere with its DNA binding. Crotamine myofiber distribution and affinity for tryptophan-rich peptides provide insights on its mechanism of action.


Subject(s)
Crotalid Venoms/chemistry , Crotalid Venoms/toxicity , Muscle, Skeletal/drug effects , Neurotoxins/chemistry , Neurotoxins/toxicity , Peptides/chemistry , Peptides/toxicity , Animals , DNA/chemistry , Male , Mice, Inbred C57BL , Muscle Contraction/drug effects , Muscle, Skeletal/physiology , Peptide Library
3.
J Mol Med, v. 100, p. 65–76, jan. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3974

ABSTRACT

Crotamine is a rattlesnake-derived toxin that causes fast-twitch muscle paralysis. As a cell-penetrating polypeptide, crotamine has been investigated as an experimental anti-cancer and immunotherapeutic agent. We hypothesized that molecules targeting crotamine could be designed to study its function and intervene in its adverse activities. Here, we characterize synthetic crotamine and show that, like the venom-purified toxin, it induces hindlimb muscle paralysis by affecting muscle contraction and inhibits KCNA3 (Kv1.3) channels. Synthetic crotamine, labeled with a fluorophore, displayed cell penetration, subcellular myofiber distribution, ability to induce myonecrosis, and bind to DNA and heparin. Here, we used this functionally validated synthetic polypeptide to screen a combinatorial phage display library for crotamine-binding cyclic peptides. Selection for tryptophan-rich peptides was observed, binding of which to crotamine was confirmed by ELISA and gel shift assays. One of the peptides (CVWSFWGMYC), synthesized chemically, was shown to bind both synthetic and natural crotamine and to block crotamine-DNA binding. In summary, our study establishes a functional synthetic substitute to the venom-derived toxin and identifies peptides that could further be developed as probes to target crotamine.

4.
J Mol Med (Berl) ; 98(11): 1561-1571, 2020 11.
Article in English | MEDLINE | ID: mdl-32895732

ABSTRACT

Crotamine is a polypeptide isolated from the venom of a South American rattlesnake. Among the properties and biological activities of crotamine, the most extraordinary is its ability to enter cells with unique selective affinity and cytotoxic activity against actively proliferating cells, such as tumor cells. This peptide is also a cargo carrier, and anticipating commercial application of this native polypeptide as a potential theranostic compound against cancer, we performed here a side-by-side characterization of a chemically synthesized full-length crotamine compared with its native counterpart. The structural, biophysical, and pharmacological properties were evaluated. Comparative NMR studies showed structural conservation of synthetic crotamine. Moreover, similarly to native crotamine, the synthetic polypeptide was also capable of inhibiting tumor growth in vivo, increasing the survival of mice bearing subcutaneous tumor. We also confirmed the ability of synthetic crotamine to transfect and transport DNA into eukaryotic cells, in addition to the importance of proteoglycans on cell surface for its internalization. This work opens new opportunities for future evaluation of chimeric and/or point-mutated analogs of this snake polypeptide, aiming for improving crotamine properties and applications, as well as possibly diminishing its potential toxic effects. KEY MESSAGES: • Synthetic crotamine showed ex vivo and in vivo activities similar to native peptide. • Synthetic crotamine structure conservation was demonstrated by NMR analysis. • Synthetic crotamine is able to transfect and transport DNA into eukaryotic cells. • Synthetic crotamine shows tumor growth inhibition in vivo. • Synthetic crotamine increases survival of mice bearing tumor.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Crotalid Venoms/chemistry , Crotalid Venoms/pharmacology , Animals , Biological Products/chemistry , Biological Products/pharmacology , Cell Line, Tumor , Cells, Cultured , Disease Models, Animal , Humans , Magnetic Resonance Spectroscopy , Mice , Peptides/chemistry , Peptides/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
5.
Sci Rep ; 9(1): 3312, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30824773

ABSTRACT

Activated proximal tubular epithelial cells (PTECs) play a crucial role in progressive tubulo-interstitial fibrosis in native and transplanted kidneys. Targeting PTECs by non-viral delivery vectors might be useful to influence the expression of important genes and/or proteins in order to slow down renal function loss. However, no clinical therapies that specifically target PTECs are available at present. We earlier showed that a cationic cell penetrating peptide isolated from South American rattlesnake venom, named crotamine, recognizes cell surface heparan sulfate proteoglycans and accumulates in cells. In healthy mice, crotamine accumulates mainly in kidneys after intraperitoneal (ip) injection. Herein we demonstrate for the first time, the overall safety of acute or long-term treatment with daily ip administrated crotamine for kidneys functions. Accumulation of ip injected crotamine in the kidney brush border zone of PTECs, and its presence inside these cells were observed. In addition, significant lower in vitro crotamine binding, uptake and reporter gene transport and expression could be observed in syndecan-1 deficient HK-2 PTECs compared to wild-type cells, indicating that the absence of syndecan-1 impairs crotamine uptake into PTECs. Taken together, our present data show the safety of in vivo long-term treatment with crotamine, and its preferential uptake into PTECs, which are especially rich in HSPGs such as syndecan-1. In addition to the demonstrated in vitro gene delivery mediated by crotamine in HK-2 cells, the potential applicability of crotamine as prototypic non-viral (gene) delivery nanocarrier to modulate PTEC gene and/or protein expression was confirmed.


Subject(s)
Cell-Penetrating Peptides , Crotalid Venoms , Epithelial Cells/metabolism , Kidney Tubules, Proximal/metabolism , Animals , Cell-Penetrating Peptides/adverse effects , Cell-Penetrating Peptides/pharmacokinetics , Cell-Penetrating Peptides/pharmacology , Crotalid Venoms/adverse effects , Crotalid Venoms/pharmacokinetics , Crotalid Venoms/pharmacology , Epithelial Cells/cytology , Kidney Tubules, Proximal/cytology , Male , Mice
6.
PLoS One ; 13(9): e0203369, 2018.
Article in English | MEDLINE | ID: mdl-30208112

ABSTRACT

The N-end rule pathway leads to regulated proteolysis as an adaptive response to external stress and is ubiquitous from bacteria to mammals. In this study, we investigated a gene coding for a putative core enzyme of this post-translational regulatory pathway in Leishmania major, which may be crucial during cytodifferentiation and the environment adaptive responses of the parasite. Leucyl, phenylalanyl-tRNA protein transferase and arginyl-tRNA protein transferase are key components of this pathway in E. coli and eukaryotes, respectively. They catalyze the specific conjugation of leucine, phenylalanine or arginine to proteins containing exposed N-terminal amino acid residues, which are recognized by the machinery for the targeted proteolysis. Here, we characterized a conserved hypothetical protein coded by the LmjF.21.0725 gene in L. major. In silico analysis suggests that the LmjF.21.0725 protein is highly conserved among species of Leishmania and might belong to the Acyl CoA-N-acyltransferases (NAT) superfamily of proteins. Immunofluorescence cell imaging indicates that the cytosolic localization of the studied protein and the endogenous levels of the protein in promastigotes are barely detectable by western blotting assay. The knockout of the two alleles of LmjF.21.0725 by homologous recombination was only possible in the heterozygous transfectant expressing LmjF.21.0725 as a transgene from a plasmid. Moreover, the kinetics of loss of the plasmid in the absence of drug pressure suggests that maintenance of the gene is essential for promastigote survival. Here, evidence is provided that this putative aminoacyl tRNA-protein transferase is essential for parasite survival. The enzyme activity and corresponding post-translational regulatory pathway are yet to be investigated.


Subject(s)
Aminoacyltransferases , Leishmania major , Protein Processing, Post-Translational/physiology , Protozoan Proteins , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Computer Simulation , Gene Knockdown Techniques , Leishmania major/enzymology , Leishmania major/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
7.
PLoS Negl Trop Dis ; 12(8): e0006700, 2018 08.
Article in English | MEDLINE | ID: mdl-30080908

ABSTRACT

The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10-25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy.


Subject(s)
Crotalid Venoms/pharmacology , Hindlimb , Muscle, Skeletal/drug effects , Paralysis , Potassium Channels, Voltage-Gated/metabolism , Voltage-Gated Sodium Channels/metabolism , 4-Aminopyridine/administration & dosage , 4-Aminopyridine/pharmacology , Animals , Crotalid Venoms/administration & dosage , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred C57BL , Pain Measurement , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Tetrodotoxin/administration & dosage , Tetrodotoxin/pharmacology , Voltage-Gated Sodium Channel Blockers/administration & dosage , Voltage-Gated Sodium Channel Blockers/pharmacology
8.
Plos Neglect Trop Dis, v. 12, n. 8, e0006700, ago. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2593

ABSTRACT

The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10–25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy.

9.
Plos Neglect. Trop. Dis. ; 12(8): e0006700, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15654

ABSTRACT

The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10–25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy.

10.
PLoS One ; 10(12): e0145071, 2015.
Article in English | MEDLINE | ID: mdl-26661890

ABSTRACT

Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/metabolism , Anura/metabolism , Oligopeptides/metabolism , Skin/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Aorta, Thoracic/cytology , Catalytic Domain , Cell Survival/drug effects , Cells, Cultured , Human Umbilical Vein Endothelial Cells , Humans , Male , Nitric Oxide/metabolism , Oligopeptides/chemistry , Oligopeptides/pharmacology , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Proline/chemistry , Protein Binding , Protein Structure, Secondary , Rats , Rats, Wistar
11.
Can J Physiol Pharmacol ; 92(6): 445-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24826789

ABSTRACT

The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.


Subject(s)
Caspase 3/metabolism , Diet, Protein-Restricted , Dietary Carbohydrates/pharmacology , Muscle, Skeletal/drug effects , Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis/drug effects , Proteolysis/drug effects , Ubiquitin/metabolism , Amino Acids/blood , Animals , Cathepsin B/metabolism , Dietary Proteins/administration & dosage , Dietary Proteins/pharmacology , Insulin Resistance , Male , Muscle Proteins/biosynthesis , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptor, Insulin/metabolism , SKP Cullin F-Box Protein Ligases/biosynthesis , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/biosynthesis
12.
PLoS One ; 7(11): e48913, 2012.
Article in English | MEDLINE | ID: mdl-23145017

ABSTRACT

Crotamine, a 42-residue polypeptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, has been shown to be a cell-penetrating protein that targets chromosomes, carries plasmid DNA into cells, and shows specificity for actively proliferating cells. Given this potential role as a nucleic acid-delivery vector, we have studied in detail the binding of crotamine to single- and double-stranded DNAs of different lengths and base compositions over a range of ionic conditions. Agarose gel electrophoresis and ultraviolet spectrophotometry analysis indicate that complexes of crotamine with long-chain DNAs readily aggregate and precipitate at low ionic strength. This aggregation, which may be important for cellular uptake of DNA, becomes less likely with shorter chain length. 25-mer oligonucleotides do not show any evidence of such aggregation, permitting the determination of affinities and size via fluorescence quenching experiments. The polypeptide binds non-cooperatively to DNA, covering about 5 nucleotide residues when it binds to single (ss) or (ds) double stranded molecules. The affinities of the protein for ss- vs. ds-DNA are comparable, and inversely proportional to salt levels. Analysis of the dependence of affinity on [NaCl] indicates that there are a maximum of ∼3 ionic interactions between the protein and DNA, with some of the binding affinity attributable to non-ionic interactions. Inspection of the three-dimensional structure of the protein suggests that residues 31 to 35, Arg-Trp-Arg-Trp-Lys, could serve as a potential DNA-binding site. A hexapeptide containing this sequence displayed a lower DNA binding affinity and salt dependence as compared to the full-length protein, likely indicative of a more suitable 3D structure and the presence of accessory binding sites in the native crotamine. Taken together, the data presented here describing crotamine-DNA interactions may lend support to the design of more effective nucleic acid drug delivery vehicles which take advantage of crotamine as a carrier with specificity for actively proliferating cells.


Subject(s)
Crotalid Venoms/chemistry , DNA, Single-Stranded/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Reptilian Proteins/chemistry , Animals , Crotalid Venoms/metabolism , Crotalus/metabolism , DNA/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Drug Delivery Systems , Genetic Vectors , Protein Structure, Tertiary , Reptilian Proteins/metabolism
13.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(22): 2039-44, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19515617

ABSTRACT

Sunflower trypsin inhibitor-1 (SFTI-1), a natural 14-residue cyclic peptide, and some of its synthetic acyclic variants are potent protease inhibitors displaying peculiar inhibitory profiles. Here we describe the synthesis and use of affinity sorbents prepared by coupling SFTI-1 analogues to agarose resin. Chymotrypsin- and trypsin-like proteases could then be selectively isolated from pancreatin; similarly, other proteases were obtained from distinct biological sources. The binding capacity of [Lys5]-SFTI-1-agarose for trypsin was estimated at over 10 mg/mL of packed gel. SFTI-1-based resins could find application either to improve the performance of current purification protocols or as novel protease-discovery tools in different areas of biological investigation.


Subject(s)
Chromatography, Affinity/methods , Helianthus/chemistry , Peptides, Cyclic/chemistry , Plant Proteins/chemistry , Serine Endopeptidases/isolation & purification , Trypsin Inhibitors/chemistry , Animals , Chromatography, Affinity/instrumentation , Pancreatin/chemistry , Protein Binding , Resins, Synthetic/chemistry , Serine Endopeptidases/chemistry , Swine
14.
Toxicon ; 46(3): 308-17, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16026810

ABSTRACT

It is widely accepted that immunological cross-reactivity of snake venoms is mediated by antibodies that recognize venom components bearing either amino acid sequence homology or similar biological functions. However, here we demonstrate that polyspecific Bothrops antivenom is a source of cross-reactive antibodies that interact with venom proteins of distinctive primary structures and biological functions. The homoserine lactone derivative of the undecapeptide IQRWSLDKYAM (Ile1-Hse11), excised from the l-amino acid oxidase (LAAO) of the Bothrops moojeni venom, was the ligand of an affinity resin used to isolate specific anti-Ile1-Hse11 antibodies which were instrumental in revealing immunological cross-reactivity among unrelated venom proteins. We examined the extent of the cross-reactivity of these antibodies by probing electroblots of venoms from representative snakes of genera Bothrops, Lachesis, Crotalus and Micrurus, and by unambiguous structural characterization of the affinity-purified proteins of B. moojeni venom recovered from an agarose-anti-Ile1-Hse11 column. Our results indicate that all venoms tested had at least three reactive components toward anti-Ile1-Hse11 antibodies, among which we identified two serine proteases, one phospholipase A2 homologue, and LAAO. We hypothesize that the cross-reactivity of the anti-Ile1-Hse11 antibodies to unrelated venom proteins derives from their mechanism of antigen recognition, whereby complementarity is achieved through reciprocal conformational adaptation of the reacting molecules. Also, we believe these findings have implications both in the development of improved antivenoms and the preparation of immunochemical reagents for diagnostic and scientific investigation purposes in the field of snake venoms.


Subject(s)
Amino Acid Oxidoreductases/immunology , Antibodies, Monoclonal/immunology , Bothrops , Cross Reactions/immunology , Snake Venoms/immunology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Amino Acid Oxidoreductases/chemistry , Animals , Chromatography, High Pressure Liquid , Cyanogen Bromide/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , L-Amino Acid Oxidase , Sequence Analysis, Protein , Snake Venoms/chemistry , Snake Venoms/toxicity
15.
Can J Physiol Pharmacol ; 80(1): 42-7, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11911225

ABSTRACT

An elastase-2 has been recently described as the major angiotensin (Ang) II-forming enzyme of the rat mesenteric arterial bed (MAB) perfusate. Here, we have investigated the interaction of affinity-purified rat MAB elastase-2 with some substrates and inhibitors of both pancreatic elastases-2 and Ang II-forming chymases. The Ang II precursor [Pro 11 -D-Ala 12]-Ang I was converted into Ang II by the rat MAB elastase-2 with catalytic efficiency of 8.6 min-1 microM-1, and the chromogenic substrates N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide and N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide were hydrolyzed by the enzyme with catalytic efficiencies of 10.6 min-1 microM-1 and 7.6 min-1 microM-1, respectively. The non-cleavable peptide inhibitor CH-5450 inhibited the rat MAB elastase-2 activities toward the substrates Ang I (IC50 = 49 microM) and N-succinly-Ala-Ala-Pro-Phe-p-nitroanilide (IC 50 = 4.8 microM), whereas N-acetyl-Ala-Ala-Pro-Leu-chloromethylketone, an effective active site-directed inhibitor of pancreatic elastase-2, efficiently blocked the Ang II-generating activity of the rat MAB enzyme (IC 50 = 4.5 microM). Altogether, the data presented here confirm and extend the enzymological similarities between pancreatic elastase-2 and its rat MAB counterpart. Moreover, the thus far unrealized interaction of elastase-2 with [Pro 11-D-Ala 12]-Ang I and CH-5450, both regarded as selective for chymases, suggests that evidence for the in vivo formation of Ang II by chymases may have been overestimated in previous investigations of Ang II-forming pathways.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Mesenteric Arteries/enzymology , Peptidyl-Dipeptidase A/metabolism , Protease Inhibitors/pharmacology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , Angiotensin II/biosynthesis , Animals , Humans , Hydrolysis , Kinetics , Peptides/metabolism , Rats , Serine Endopeptidases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...