Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Oral Dis ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764359

ABSTRACT

OBJECTIVE: Hypertension disrupts the bone integrity and its repair ability. This study explores the efficiency of a therapy based on the application of mesenchymal stem cells (MSCs) to repair bone defects of spontaneously hypertensive rats (SHR). METHODS: First, we evaluated SHR in terms of bone morphometry and differentiation of MSCs into osteoblasts. Then, the effects of the interactions between MSCs from normotensive rats (NTR-MSCs) cocultured with SHR (SHR-MSCs) on the osteoblast differentiation of both cell populations were evaluated. Also, bone formation into calvarial defects of SHR treated with NTR-MSCs was analyzed. RESULTS: Hypertension induced bone loss evidenced by reduced bone morphometric parameters of femurs of SHR compared with NTR as well as decreased osteoblast differentiation of SHR-MSCs compared with NTR-MSCs. NTR-MSCs partially restored the capacity of SHR-MSCs to differentiate into osteoblasts, while SHR-MSCs exhibited a slight negative effect on NTR-MSCs. An enhanced bone repair was observed in defects treated with NTR-MSCs compared with control, stressing this cell therapy efficacy even in bones damaged by hypertension. CONCLUSION: The use of MSCs derived from a heathy environment can be in the near future a smart approach to treat bone loss in the context of regenerative dentistry for oral rehabilitation of hypertensive patients.

2.
Life Sci ; 340: 122463, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38286209

ABSTRACT

AIMS: Cell therapy utilizing mesenchymal stem cells (MSCs) from healthy donors (HE-MSCs) is a promising strategy for treating osteoporotic bone defects. This study investigated the effects of interaction between HE-MSCs and MSCs from osteoporotic donors (ORX-MSCs) on osteoblast differentiation of MSCs and of HE-MSCs on bone formation in calvarial defects of osteoporotic rats. MATERIALS AND METHODS: Osteoporosis was induced by orchiectomy (ORX) and its effects on the bone were evaluated by femur microtomography (µCT) and osteoblast differentiation of bone marrow MSCs. HE- and ORX-MSCs were cocultured, and osteoblast differentiation was evaluated using genotypic and phenotypic parameters. HE-MSCs were injected into the calvarial defects of osteoporotic rats, and bone formation was evaluated by µCT, histology, and gene expression of osteoblast markers. KEY FINDINGS: ORX-induced osteoporosis was revealed by reduced bone morphometric parameters and osteoblast differentiation in ORX-MSCs. HE-MSCs partially recovered the osteogenic potential of ORX-MSCs, whereas HE-MSCs were mildly affected by ORX-MSCs. Additionally, the bone morphogenetic protein and wingless-related integration site signaling pathway components were similarly modulated in cocultures involving ORX-MSCs. HE-MSCs induced meaningful bone formation, highlighting the effectiveness of cell therapy even in osteoporotic bones. SIGNIFICANCE: These results provide new perspectives on the development of cell-based therapies to regenerate bone defects in patients with disorders that affect bone tissue.


Subject(s)
Mesenchymal Stem Cells , Osteoporosis , Humans , Rats , Animals , Osteogenesis , Bone and Bones/metabolism , Cell Differentiation/genetics , Osteoporosis/metabolism , Osteoblasts/metabolism , Cells, Cultured
3.
J Cell Physiol ; 238(11): 2625-2637, 2023 11.
Article in English | MEDLINE | ID: mdl-37661654

ABSTRACT

The secretome present in the conditioned medium (CM) of mesenchymal stem cells (MSCs) is a promising tool to be used in therapies to promote bone regeneration. Considering the high osteogenic potential of the bone morphogenetic protein 9 (BMP-9), we hypothesized that the secretome of MSCs overexpressing BMP-9 (MSCsBMP-9 ) enhances the osteoblast differentiation of MSCs and the bone formation in calvarial defects. CM of either MSCsBMP-9 (CM-MSCsBMP-9 ) or MSCs without BMP-9 overexpression (CM-MSCsVPR ) were obtained at different periods. As the CM-MSCsBMP-9 generated after 1 h presented the highest BMP-9 concentration, CM-MSCsBMP-9 and CM-MSCsVPR were collected at this time point and used to culture MSCs and to be injected into mouse calvarial defects. The CM-MSCsBMP-9 enhanced the osteoblast differentiation of MSC by upregulating RUNX2, alkaline phosphatase (ALP) and osteopontin protein expression, and ALP activity, compared with CM-MSCsVPR . The CM-MSCsBMP-9 also enhanced the bone repair of mouse calvarial defects, increasing bone volume, bone volume/total volume, bone surface, and trabecular number compared with untreated defects and defects treated with CM-MSCsVPR or even with MSCsBMP-9 themselves. In conclusion, the potential of the MSCBMP-9 -secretome to induce osteoblast differentiation and bone formation shed lights on novel cell-free-based therapies to promote bone regeneration of challenging defects.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Mice , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation , Cells, Cultured , Growth Differentiation Factor 2/genetics , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Secretome
4.
Biology (Basel) ; 12(8)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37627031

ABSTRACT

Bone formation is driven by many signaling molecules including bone morphogenetic protein 9 (BMP-9) and hypoxia-inducible factor 1-alpha (HIF-1α). We demonstrated that cell therapy using mesenchymal stem cells (MSCs) overexpressing BMP-9 (MSCs+BMP-9) enhances bone formation in calvarial defects. Here, the effect of hypoxia on BMP components and targets of MSCs+BMP-9 and of these hypoxia-primed cells on osteoblast differentiation and bone repair was evaluated. Hypoxia was induced with cobalt chloride (CoCl2) in MSCs+BMP-9, and the expression of BMP components and targets was evaluated. The paracrine effects of hypoxia-primed MSCs+BMP-9 on cell viability and migration and osteoblast differentiation were evaluated using conditioned medium. The bone formation induced by hypoxia-primed MSCs+BMP-9 directly injected into rat calvarial defects was also evaluated. The results demonstrated that hypoxia regulated BMP components and targets without affecting BMP-9 amount and that the conditioned medium generated under hypoxia favored cell migration and osteoblast differentiation. Hypoxia-primed MSCs+BMP-9 did not increase bone repair compared with control MSCs+BMP-9. Thus, despite the lack of effect of hypoxia on bone formation, the enhancement of cell migration and osteoblast differentiation opens windows for further investigations on approaches to modulate the BMP-9-HIF-1α circuit in the context of cell-based therapies to induce bone regeneration.

5.
J Funct Biomater ; 14(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36826878

ABSTRACT

BACKGROUND: The events of bone formation and osteoblast/titanium (Ti) interactions may be affected by Hedgehog and Notch signalling pathways. Herein, we investigated the effects of modulation of these signalling pathways on osteoblast differentiation caused by the nanostructured Ti (Ti-Nano) generated by H2SO4/H2O2. METHODS: Osteoblasts from newborn rat calvariae were cultured on Ti-Control and Ti-Nano in the presence of the Hedgehog agonist purmorphamine or antagonist cyclopamine and of the Notch antagonist N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) or agonist bexarotene. Osteoblast differentiation was evaluated by alkaline phosphatase activity and mineralization, and the expression of Hedgehog and Notch receptors was also evaluated. RESULTS: In general, purmorphamine and DAPT increased while cyclopamine and bexarotene decreased osteoblast differentiation and regulated the receptor expression on both Ti surfaces, with more prominent effects on Ti-Nano. The purmorphamine and DAPT combination exhibited synergistic effects on osteoblast differentiation that was more intense on Ti-Nano. CONCLUSION: Our results indicated that the Hedgehog and Notch signalling pathways drive osteoblast/Ti interactions more intensely on nanotopography. We also demonstrated that combining Hedgehog activation with Notch inhibition exhibits synergistic effects on osteoblast differentiation, especially on Ti-Nano. The uncovering of these cellular mechanisms contributes to create strategies to control the process of osseointegration based on the development of nanostructured surfaces.

6.
Biomimetics (Basel) ; 7(3)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36134940

ABSTRACT

This study evaluates the effects of the availability of exogenous BMP-7 on osteoblastic cells' differentiation on a nanotextured Ti surface obtained by chemical etching (Nano-Ti). The MC3T3-E1 and UMR-106 osteoblastic cell lines were cultured for 5 and 7 days, respectively, on a Nano-Ti surface and on a control surface (Control-Ti) in an osteogenic medium supplemented with either 40 or 200 ng/mL recombinant mouse (rm) BMP-7. The results showed that MC3T3-E1 cells exhibited distinct responsiveness when exposed to each of the two rmBMP-7 concentrations, irrespective of the surface. Even with 40 ng/mL rmBMP-7, important osteogenic effects were noticed for Control-Ti in terms of cell proliferation potential; Runx2, Osx, Alp, Bsp, Opn, and Smad1 mRNA expression; and in situ ALP activity. For Nano-Ti, the effects were limited to higher Alp, Bsp, and Opn mRNA expression and in situ ALP activity. On both surfaces, the osteogenic potential of UMR-106 cultures remained unaltered with 40 ng/mL rmBMP-7, but it was significantly reduced when the cultures were exposed to the 200 ng/mL concentration. The availability of rmBMP-7 to pre-osteoblastic cells at the concentrations used alters the expression profile of osteoblast markers, indicative of the acquisition of a more advanced stage of osteoblastic differentiation. This occurs less pronouncedly on the nanotextured Ti and without reflecting in higher mineralized matrix production by differentiated osteoblasts on both surfaces.

7.
Lasers Med Sci ; 37(7): 2845-2854, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35366748

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic disease that affects bone metabolism, which can be related to a reduced osteogenic potential of bone marrow mesenchymal stem cells (BM-MSCs). MSCs from diabetic rats (dBM-MSC) have shown a tendency to differentiate towards adipocytes (AD) instead of osteoblasts (OB). Since photobiomodulation (PBM) therapy is a non-invasive treatment capable of recovering the osteogenic potential of dBM-MSCs, we aimed to evaluate whether PBM can modulate MSC's differentiation under hyperglycemic conditions. BM-MSCs of healthy and diabetic rats were isolated and differentiated into osteoblasts (OB and dOB) and adipocytes (AD and dAD). dOB and dAD were treated with PBM every 3 days (660 nm; 5 J/cm2; 0.14 J; 20 mW; 0.714 W/cm2) for 17 days. Cell morphology and viability were evaluated, and cell differentiation was confirmed by gene expression (RT-PCR) of bone (Runx2, Alp, and Opn) and adipocyte markers (Pparγ, C/Ebpα, and C/Ebpß), production of extracellular mineralized matrix (Alizarin Red), and lipid accumulation (Oil Red). Despite no differences on cell morphology, the effect of DM on cells was confirmed by a decreased gene expression of bone markers and matrix production of dOB, and an increased expression of adipocyte and lipid accumulation of dAD, compared to heatlhy cells. On the other hand, PBM reversed the effects of dOB and dAD. The negative effect of DM on cells was confirmed, and PBM improved OB differentiation while decreasing AD differentiation, driving the fate of dBM-MSCs. These results may contribute to optimizing bone regeneration in diabetic patients.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Mesenchymal Stem Cells , Adipocytes , Animals , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/radiotherapy , Hyperglycemia/metabolism , Hyperglycemia/radiotherapy , Lipids , Osteoblasts , Osteogenesis/genetics , Rats
8.
Clin Oral Investig ; 26(1): 1053-1065, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34370100

ABSTRACT

OBJECTIVES: The purpose of this investigation was to evaluate in vivo the response of bone tissue to photobiomodulation when associated with texturized P(VDF-TrFE)/BT in calvaria defects of ovariectomized rats. MATERIALS AND METHODS: Wistar Hannover rats were submitted to ovariectomy/control surgery. Calvaria bone defects of 5-mm diameter were performed after 90 days of ovariectomy. The animals were divided into OVX (without laser (L) and membrane), OVX + P(VDF-TrFE)/BT, OVX + P(VDF-TrFE)/BT + L, and OVX + PTFE + L. It was utilized a low-intensity gallium-aluminum-arsenide laser (GaAlAs) with 780-nm wavelength and 30-J/cm2 energy density in 12 sessions (120 s). Thirty days after the bone defect the animals were euthanized for histological, microtomographic, and molecular evaluation. Quantitative analysis was analyzed by statistical software for p < 0.05. RESULTS: Histological parameters showed bone tissue formation at the borders of all group defects. The association of photobiomodulation and texturized P(VDF-TrFE)/BT was not synergistic and did not show significant changes in morphometric analysis and biomarkers gene expression. Nevertheless, texturized P(VDF-TrFE)/BT membrane enhanced bone repair regardless of the association with photobiomodulation therapy, with an increase of connectivity density when compared to the OVX + PTFE + L group. The association of photobiomodulation therapy and PTFE was synergistic, increasing the expression of Runx2, Alp, Bsp, Bglap, Sp7, and Rankl, even though not enough to reflect significance in the morphometric parameters. CONCLUSIONS: The utilization of texturized P (VDF-TrFE)/BT, regardless of the association with photobiomodulation therapy, enhanced bone repair in an experimental model of osteoporosis.


Subject(s)
Low-Level Light Therapy , Animals , Female , Osteogenesis , Rats , Rats, Wistar , Skull/surgery , Titanium
9.
Cell Tissue Res ; 386(2): 335-347, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34223979

ABSTRACT

The extracellular matrix protein Agrin has been detected in chondrocytes and endosteal osteoblasts but its function in osteoblast differentiation has not been investigated yet. Thus, it is possible that Agrin contributes to osteoblast differentiation and, due to Agrin and wingless-related integration site (Wnt) sharing the same receptor, transmembrane low-density lipoprotein receptor-related protein 4 (Lrp4), and the crosstalk between Wnt and bone morphogenetic protein (BMP) signalling, both pathways could be involved in this Agrin-mediated osteoblast differentiation. Confirming this, Agrin and its receptors Lrp4 and α-dystroglycan (Dag1) were expressed during differentiation of osteoblasts from three different sources. Moreover, the disruption of Agrin impaired the expression of its receptors and osteoblast differentiation, and the treatment with recombinant Agrin slightly increase this process. In addition, whilst Agrin knockdown downregulated the expression of genes related to Wnt and BMP signalling pathways, the addition of Agrin had no effect on these genes. Altogether, these data uncover the contribution of Agrin to osteoblast differentiation and suggest that, at least in part, an Agrin-Wnt-BMP circuit is involved in this process. This makes Agrin a candidate as target for developing new therapeutic strategies to treat bone-related diseases and injuries.


Subject(s)
Agrin/analysis , Osteoblasts/cytology , 3T3 Cells , Agrin/genetics , Animals , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Humans , Mice , Mice, Inbred C57BL , Osteoblasts/metabolism , Osteogenesis
10.
J Cell Physiol ; 235(11): 8293-8303, 2020 11.
Article in English | MEDLINE | ID: mdl-32239701

ABSTRACT

This study aimed to investigate if wingless-related integration site (Wnt) signaling participates in the high osteogenic potential of titanium with nanotopography (Ti-Nano). We showed that among the several components of the Wnt signaling pathway, Frizzled 6 (Fzd6) was the transcript most intensely modulated by nanotopography compared with the untreated Ti surface (Ti-Machined). Then, we investigated whether and how Fzd6 participates in the regulation of osteoblast differentiation caused by nanotopography. The Fzd6 silencing with CRISPR-Cas9 transfection in MC3T3-E1 cells induced a more pronounced inhibition of osteoblast differentiation of cells cultured on nanotopography than those cultured on Ti-Machined. The analysis of the expression of calcium-calmodulin-dependent protein kinase II and ß-catenin demonstrated that Fzd6 disruption inhibited the osteoblast differentiation induced by Ti-Nano by preventing the activation of Wnt/ß-catenin but not that of Wnt/Ca2+ signaling, which is usually triggered by the receptor Fzd6. These findings elucidate the biological function of Fzd6 as a receptor that triggers Wnt/ß-catenin signaling and the cellular mechanisms modulated by nanotopography during osteoblast differentiation.


Subject(s)
Cell Differentiation/physiology , Frizzled Receptors/metabolism , Osteoblasts/metabolism , Titanium , Wnt Signaling Pathway/physiology , Animals , Cell Line , Metal Nanoparticles , Mice , Osteogenesis/physiology , Surface Properties , Titanium/chemistry , Titanium/pharmacology
11.
J Bone Miner Metab ; 38(4): 481-490, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32078052

ABSTRACT

INTRODUCTION: The aim of this study was to evaluate the in vitro osteogenic potential of osteoblasts from neural crest-derived frontal bone (OB-NC) and mesoderm-derived parietal bone (OB-MS) and the bone formation induced by them when injected into calvarial defects. MATERIALS AND METHODS: Calvarial bones were collected from newborn Wistar rats (3-day old) and characterized as frontal and parietal prior to OB-NC and OB-MS harvesting. The cells were cultured, and several parameters of osteoblast differentiation were evaluated. These cells, or PBS without cells (control), were locally injected into 5-mm rat calvarial defects (5 × 106 cells/defect) and after 4 weeks bone formation was evaluated by morphometric and histological analyses. RESULTS: The characterization of frontal and parietal bones assured the different embryonic origin of both cell populations, OB-NC and OB-MS. The OB-NC presented higher proliferation while the OB-MS presented higher alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of runt-related transcription factor 2, Alp, bone sialoprotein and osteocalcin revealing their high osteogenic potential. µCT analysis indicated that there was higher amount of bone formation in defects injected with both OB-NC and OB-MS compared to the control. Moreover, the bone tissue formed by both cells displayed the same histological characteristics. CONCLUSIONS: Despite the distinct in vitro osteogenic potential, OB-NC and OB-MS induced similar bone repair in a rat calvarial defect model. Thus, osteoblasts, irrespective of their in vitro osteogenic potential linked to embryonic origins, seem to be suitable for cell-based therapies aiming to repair bone defects.


Subject(s)
Osteoblasts/cytology , Osteogenesis , Skull/embryology , Wound Healing , Animals , Animals, Newborn , Biomarkers/metabolism , Cell Differentiation , Cell Proliferation/genetics , Cells, Cultured , Gene Expression Regulation , Osteogenesis/genetics , Rats, Wistar , Wound Healing/genetics , X-Ray Microtomography
12.
J Cell Biochem ; 120(7): 11842-11852, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30746760

ABSTRACT

Mesenchymal stem cells (MSCs) have been used in therapies for bone tissue healing. The aim of this study was to investigate the effect of cell source and osteoblast differentiation on gene expression profiles of MSCs from bone marrow (BM-MSCs) or adipose tissue (AT-MSCs) to contribute for selecting a suitable cell population to be used in cell-based strategies for bone regeneration. BM-MSCs and AT-MSCs were cultured in growth medium to keep MSCs characteristics or in osteogenic medium to induce osteoblast differentiation (BM-OBs and AT-OBs). The transcriptomic analysis was performed by microarray covering the entire rat functional genome. It was observed that cells from bone marrow presented higher expression of genes related to osteogenesis, whereas cells from adipose tissue showed a higher expression of genes related to angiogenesis and adipocyte differentiation, irrespective of cell differentiation. By comparing cells from the same source, MSCs from both sources exhibited higher expression of genes involved in angiogenesis, osteoblast differentiation, and bone morphogenesis than osteoblasts. The clustering analysis showed that AT-OBs exhibited a gene expression profile closer to MSCs from both sources than BM-OBs, suggesting that BM-OBs were in a more advanced stage of differentiation. In conclusion, our results suggest that in cell-based therapies for bone regeneration AT-MSCs could be considered for angiogenic purposes, whereas BM-MSCs and osteoblasts differentiated from either source could be better for osteogenic approaches.

13.
Cytotherapy ; 20(10): 1267-1277, 2018 10.
Article in English | MEDLINE | ID: mdl-30196010

ABSTRACT

BACKGROUND AIMS: Regenerative medicine strategies based on cell therapy are considered a promising approach to repair bone defects. The aims of this study were to evaluate the effect of subculturing on the osteogenic potential of osteoblasts derived from newborn rat calvaria and the effect of these osteoblasts on bone repair of rat calvaria defects. METHODS: Cells were obtained from 50 newborn rat calvaria, and primary osteoblasts (OB) were compared with first passage (OB-P1) in terms of osteogenic potential by assaying cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of the osteoblastic markers RUNX2, ALP, osteocalcin and bone sialoprotein. Then, 5-mm calvaria defects were created in 24 Wistar rats, and after 2 weeks, they were locally injected with 50 µL of phosphate-buffered saline containing either 5 × 106 osteoblasts (OB-P1, n = 12) or no cells (control, n = 12). Four weeks post-injection, the bone formation was evaluated by micro-computed tomography and histological analyses. Data were compared by analysis of variance, followed by the Student-Newman-Keuls's test or Student's t-test (P ≤ 0.05). RESULTS: OB-P1 showed high proliferation and ALP activity, and despite the reduced gene expression of osteoblastic markers and extracellular matrix mineralization compared with OB, they displayed osteogenic potential, being a good choice for injection into calvaria defects. The micro-tomographic and histological data showed that defects treated with OB-P1 presented higher bone formation compared with control defects. DISCUSSION: Our results indicate that cells derived from newborn rat calvaria retain osteoblastic characteristics after subculturing and that these osteoblasts stimulate bone repair in a rat calvaria defect model.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Osteoblasts/transplantation , Skull/injuries , Alkaline Phosphatase/metabolism , Animals , Biomarkers , Cells, Cultured , Extracellular Matrix/metabolism , Gene Expression Regulation , Osteoblasts/metabolism , Osteoblasts/physiology , Osteocalcin/biosynthesis , Osteocalcin/genetics , Osteogenesis/physiology , Rats, Wistar , Skull/cytology , Transplantation, Homologous/methods , X-Ray Microtomography
14.
J Mater Sci Mater Med ; 27(12): 180, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27770393

ABSTRACT

Osteoporosis is a chronic disease that impairs proper bone remodeling. Guided bone regeneration is a surgical technique that improves bone defect in a particular region through new bone formation, using barrier materials (e.g. membranes) to protect the space adjacent to the bone defect. The polytetrafluorethylene membrane is widely used in guided bone regeneration, however, new membranes are being investigated. The purpose of this study was to evaluate the effect of P(VDFTrFE)/BT [poly(vinylidene fluoride-trifluoroethylene)/barium titanate] membrane on in vivo bone formation. Twenty-three Wistar rats were submitted to bilateral ovariectomy. Five animals were subjected to sham surgery. After 150 days, bone defects were created and filled with P(VDF-TrFE)/BT membrane or PTFE membrane (except for the sham and OVX groups). After 4 weeks, the animals were euthanized and calvaria samples were subjected to histomorphometric and computed microtomography analysis (microCT), besides real time polymerase chain reaction (real time PCR) to evaluate gene expression. The histomorphometric analysis showed that the animals that received the P(VDF-TrFE)/BT membrane presented morphometric parameters similar or even better compared to the animals that received the PTFE membrane. The comparison between groups showed that gene expression of RUNX2, BSP, OPN, OSX and RANKL were lower on P(VDF-TrFE)/BT membrane; the gene expression of ALP, OC, RANK and CTSK were similar and the gene expression of OPG, CALCR and MMP9 were higher when compared to PTFE. The results showed that the P(VDF-TrFE)/BT membrane favors bone formation, and therefore, may be considered a promising biomaterial to support bone repair in a situation of osteoporosis.


Subject(s)
Barium Compounds/chemistry , Hydrocarbons, Fluorinated/chemistry , Osteogenesis , Osteoporosis/surgery , Titanium/chemistry , Vinyl Compounds/chemistry , Animals , Biocompatible Materials/chemistry , Bone Regeneration , Bone Transplantation , Bone and Bones/metabolism , Cathepsin K/metabolism , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation , Matrix Metalloproteinase 9/metabolism , Membranes, Artificial , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteoporosis/metabolism , RANK Ligand/metabolism , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptors, Calcitonin/metabolism , X-Ray Microtomography
15.
Food Chem Toxicol ; 70: 205-13, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24865317

ABSTRACT

Lutein (LT) is a carotenoid obtained by diet and despite its antioxidant activity had been biochemically reported, few studies are available concerning its influence on the expression of antioxidant genes. The expression of 84 genes implicated in antioxidant defense was quantified using quantitative reverse transcription polymerase chain reaction array. DNA damage was measured by comet assay and glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were quantified as biochemical parameters of oxidative stress in mouse kidney and liver. cDDP treatment reduced concentration of GSH and increased TBARS, parameters that were ameliorated in treatment associated with LT. cDDP altered the expression of 32 genes, increasing the expression of GPx2, APC, Nqo1 and CCs. LT changed the expression of 37 genes with an induction of 13 mainly oxygen transporters. In treatments associating cDDP and LT, 30 genes had their expression changed with a increase of the same genes of the cDDP treatment alone. These results suggest that LT might act scavenging reactive species and also inducing the expression of genes related to a better antioxidant response, highlighting the improvement of oxygen transport. This improved redox state of the cell through LT treatment could be related to the antigenotoxic and antioxidant effects observed.


Subject(s)
DNA Damage/drug effects , Lutein/pharmacology , Oxidative Stress/drug effects , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Animals , Antioxidants/pharmacology , Cisplatin/adverse effects , Comet Assay , Female , Gene Expression Regulation , Glutathione/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Kidney/drug effects , Liver/drug effects , Male , Mice , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidation-Reduction/drug effects , Oxygen/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
16.
J Craniofac Surg ; 24(5): 1636-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24036742

ABSTRACT

The purpose of this study is to comparatively assess the effect of midazolam and nitrous oxide associated with oxygen, in lower third molar extractions, on the change in the anxiety level of patients by salivary cortisol dosage. Twenty-eight male patients underwent lower third molar extraction under sedation with midazolam and nitrous oxide. Objective (salivary cortisol dosage) and subjective (Corah Dental Anxiety Scale) data have been obtained. By salivary cortisol, 40 minutes after midazolam administration, there has been a statistically significant difference compared with the mean baseline value. Midazolam was the most effective sedation method for reducing salivary cortisol level.


Subject(s)
Anesthesia, Dental/methods , Anesthetics, Inhalation/administration & dosage , Conscious Sedation/methods , Dental Anxiety/prevention & control , Hypnotics and Sedatives/administration & dosage , Midazolam/administration & dosage , Nitrous Oxide/administration & dosage , Adolescent , Adult , Dental Anxiety/psychology , Follow-Up Studies , Humans , Hydrocortisone/analysis , Male , Mandible/surgery , Molar, Third/surgery , Oxygen/administration & dosage , Saliva/chemistry , Tooth Extraction/methods , Young Adult
17.
Braz Dent J ; 23(4): 328-36, 2012.
Article in English | MEDLINE | ID: mdl-23207845

ABSTRACT

The aim of this study was to evaluate the odontogenic potential of undifferentiated pulp cells (OD-21 cell line) through chemical stimuli in vitro. Cells were divided into uninduced cells (OD-21), induced cells (OD-21 cultured in supplemented medium/OD-21+OM) and odontoblast-like cells (MDPC-23 cell line). After 3, 7, 10 and 14 days of culture, it was evaluated: proliferation and cell viability, alkaline phosphatase activity, total protein content, mineralization, immunolocalization of dentin matrix acidic phosphoprotein 1 (DMP1), alkaline phosphatase (ALP) and osteopontin (OPN) and quantification of genes ALP, OSTERIX (Osx), DMP1 and runt-related transcription factor 2 (RUNX2) through real-time polymerase chain reaction (PCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests (p<0.05). There was a decrease in cell proliferation in OD-21 + OM, whereas cell viability was similar in all groups, except at 7 days. The amount of total protein was higher in group OD-21 + OM in all periods; the same occurred with ALP activity after 10 days when compared with OD-21, with no significant differences from the MDPC-23 group. Mineralization was higher in OD-21+OM when compared with the negative control. Immunolocalization demonstrated that DMP1 and ALP were highly expressed in MDPC-23 cells and OD-21 + OM cells, whereas OPN was high in all groups. Real-time PCR revealed that DMP1 and ALP expression was higher in MDPC-23 cell cultures, whereas RUNX2 was lower for these cells and higher for OD-21 negative control. Osx expression was lower for OD-21 + OM. These results suggest that OD-21 undifferentiated pulp cells have odontogenic potential and could be used in dental tissue engineering.


Subject(s)
Dental Pulp/cytology , Odontogenesis/physiology , Alkaline Phosphatase/analysis , Animals , Cell Count , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Core Binding Factor Alpha 1 Subunit/analysis , Culture Media , Extracellular Matrix Proteins/analysis , Mice , Odontoblasts/drug effects , Osteopontin/analysis , Phosphoproteins/analysis , Proteins/analysis , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sp7 Transcription Factor , Time Factors , Tooth Calcification/drug effects , Transcription Factors/analysis
18.
Braz. dent. j ; 23(4): 328-336, 2012. ilus
Article in English | LILACS | ID: lil-658006

ABSTRACT

The aim of this study was to evaluate the odontogenic potential of undifferentiated pulp cells (OD-21 cell line) through chemical stimuli in vitro. Cells were divided into uninduced cells (OD-21), induced cells (OD-21 cultured in supplemented medium/OD-21+OM) and odontoblast-like cells (MDPC-23 cell line). After 3, 7, 10 and 14 days of culture, it was evaluated: proliferation and cell viability, alkaline phosphatase activity, total protein content, mineralization, immunolocalization of dentin matrix acidic phosphoprotein 1 (DMP1), alkaline phosphatase (ALP) and osteopontin (OPN) and quantification of genes ALP, OSTERIX (Osx), DMP1 and runt-related transcription factor 2 (RUNX2) through real-time polymerase chain reaction (PCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests (p<0.05). There was a decrease in cell proliferation in OD-21 + OM, whereas cell viability was similar in all groups, except at 7 days. The amount of total protein was higher in group OD-21 + OM in all periods; the same occurred with ALP activity after 10 days when compared with OD-21, with no significant differences from the MDPC-23 group. Mineralization was higher in OD-21+OM when compared with the negative control. Immunolocalization demonstrated that DMP1 and ALP were highly expressed in MDPC-23 cells and OD-21 + OM cells, whereas OPN was high in all groups. Real-time PCR revealed that DMP1 and ALP expression was higher in MDPC-23 cell cultures, whereas RUNX2 was lower for these cells and higher for OD-21 negative control. Osx expression was lower for OD-21 + OM. These results suggest that OD-21 undifferentiated pulp cells have odontogenic potential and could be used in dental tissue engineering.


O objetivo foi avaliar o potencial odontogênico de células indiferenciadas da polpa (OD-21) por meio de indução química in vitro. As células foram divididas em grupos: controle (OD-21), induzido (OD-21 em meio suplementado/OD-21 + OM), e células odontoblastóides (MDPC-23). Após 3, 7, 10 e 14 dias, avaliou-se proliferação e viabilidade celular, proteína total e fosfatase alcalina (ALP), mineralização, imunolocalização da proteína da matriz dentinária 1 (DMP1), ALP e osteopontina (OPN), assim como a expressão dos genes ALP, OSTERIX (Osx), DMP1 e fator de transcrição RUNX2 por PCR em tempo real. Os dados foram avaliados pelo teste de Kruskal-Wallis seguido pelo teste de Mann-Whitney U (p<0.05). Houve diminuição na proliferação celular em OD-21 + OM, com viabilidade celular similar em todos os grupos, exceto aos sete dias. O conteúdo de proteína total foi maior no grupo OD-21 + OM em todos os períodos; o mesmo ocorreu com a atividade de ALP quando comparada com o grupo OD-21, além de apresentar resultados similares ao grupo MDPC-23. A mineralização foi maior em OD-21 + OM quando comparada com o controle negativo. A imunolocalização demonstrou expressão de DMP1 e ALP em MDPC-23 e OD-21 + OM, enquanto que todos os grupos foram positivos para OPN. A expressão gênica de DMP1 e ALP foi maior nas culturas de MDPC-23, enquanto que a de RUNX2 foi menor para estas células e maior no controle negativo. A expressão de OSTERIX foi menor em OD-21 + OM quando comparada aos outros grupos. Sugere-se que as células indiferenciadas da polpa da linhagem OD-21 apresentam potencial odontogênico e poderiam ser usadas para a engenharia tecidual.


Subject(s)
Animals , Mice , Dental Pulp/cytology , Odontogenesis/physiology , Alkaline Phosphatase/analysis , Cell Count , Cell Culture Techniques , Cell Line , Culture Media , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Core Binding Factor Alpha 1 Subunit/analysis , Extracellular Matrix Proteins/analysis , Odontoblasts/drug effects , Osteopontin/analysis , Phosphoproteins/analysis , Proteins/analysis , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Tooth Calcification/drug effects , Transcription Factors/analysis
19.
J Int Acad Periodontol ; 13(3): 65-72, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22220368

ABSTRACT

OBJECTIVE: The aim of the present study was to evaluate the inflammatory response in sites where crowns were placed supragingivally, at the level of the gingival margin and subgingivally. These were measured clinically and through the levels of interleukin-1 3 and matrix metalloproteinase-2, inflammatory mediators, before and after periodontal therapy. METHODS: From 68 patients analyzed, 10 were selected for this study. The gingival crevicular fluid of the patients was collected and analyzed using standard enzyme-linked immunosorbent assay (ELISA). The clinical parameters were measured and correlated with interleukin-1beta and matrix metalloproteinase-2. Both analyses were realized before (baseline) and 2 months after non-surgical periodontal therapy. The two-way variance analysis (two-way ANOVA), Tukey-Kramer multiple comparisons test (post hoc) and Pearson parametric correlation test were performed in statistical analysis. RESULTS: There were statistically significant differences before and after nonsurgical periodontal therapy when comparing supra- and subgingival margins for the plaque and bleeding indexes (p < 0.05). There was a tendency toward correlation between the reduction of plaque index and the reduction of interleukin-1beta levels, both for supragingival (r = 0.694, p = 0.026) and subgingival margins (r = 0.715, p = 0.020) post non-surgical periodontal therapy. The levels of matrix metalloproteinase-2 were not detectable by ELISA because they were below the detection threshold of the assay. CONCLUSION: Supragingival restorations appeared to be more adequate in promoting periodontal health when compared with the other possible marginal finish lines. They also presented a better response to basic periodontal treatment, according to clinical and inflammatory findings.


Subject(s)
Crowns/adverse effects , Dental Scaling , Gingival Crevicular Fluid/chemistry , Gingivitis/etiology , Analysis of Variance , Dental Marginal Adaptation , Dental Plaque Index , Gingival Crevicular Fluid/metabolism , Gingivitis/therapy , Humans , Interleukin-1beta/analysis , Matrix Metalloproteinase 2/analysis , Periodontal Index , Statistics, Nonparametric
20.
Transfusion ; 47(1): 147-53, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17207243

ABSTRACT

BACKGROUND: The Knops blood group system consists of antigens encoded by exon 29 of complement receptor 1 (CR1) gene. To better elucidate the complexity of Knops group system, the frequency of six single-nucleotide polymorphisms (SNPs) in three Brazilian populations is determined. STUDY DESIGN AND METHODS: A total of 118 individuals descendant from Europe, Asia, and Africa were studied. The genomic fragment of CR1 was amplified by polymerase chain reaction, and the SNPs and haplotypes were determined after DNA sequence analysis. RESULTS: Among the six polymorphisms characterized, one of them was described for the first time. The analysis of allele frequency showed that these six SNPs did not differ between the European and Asian groups. The African group presented a higher frequency of alleles McC(b), Sl2, and KAM+. The six polymorphisms gave origin to 12 haplotypes that were defined for the first time. The haplotypes 1 (4646A, Kn(a), McC(a), Sl1, Sl4, KAM+), 2 (4646A, Kn(a), McC(a), Sl1, KAM-), and 3 (4646A, Kn(a), McC(a), Sl2, Sl4, KAM-) are the most frequent in all populations. The H2 presents similar frequency in all populations; however, whereas the H1 presented a higher prevalence in the European and Asian groups, in the African group H3 was present in a higher prevalence. CONCLUSIONS: In this study, a new SNP substituting serine for asparagine at amino acid 1540 was identified. Moreover 12 haplotypes were identified. The differences in haplotype frequencies strongly suggest that the H1 and H2 might be the ancestral one while the H3 may have originated in Africa and may have fixed there by positive selection.


Subject(s)
Asian People/genetics , Black People/genetics , Blood Group Antigens/genetics , Haplotypes , Receptors, Complement/genetics , White People/genetics , Amino Acid Substitution , Asparagine , Brazil , Gene Frequency , Genotype , Humans , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Serine
SELECTION OF CITATIONS
SEARCH DETAIL
...