Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Arch Biochem Biophys ; 751: 109840, 2024 01.
Article in English | MEDLINE | ID: mdl-38040223

ABSTRACT

Osteosarcoma (OS) is a primary malignant bone tumor that has an abnormal expression of oncogenesis and tumor suppressors and causes dysregulation of various signaling pathways. Thus, novel therapeutic strategies for OS are needed to overcome the resistance of traditional treatments. This study evaluated the cytotoxic and anticancer effects of the association between menadione (MEN) and protocatechuic acid (PCA) in murine OS cells (UMR-106). The concentrations were 3.12 µM of isolated MEN, 500 µM of isolated PCA, and their associations. We performed cell viability assays, morphology modification analysis, cell migration by the wound-healing method, apoptosis by flow cytometry, reactive oxygen species (ROS) production, gene expression of NOX by RT-qPCR, and degradation of MMP-2 and 9 by zymography. Our results showed that the association of MEN+PCA was more effective in OS cells than the compounds alone. The association decreased cell viability, delayed cell migration, and decreased the expression of NOX-2 and ROS. In addition, the MEN+PCA association induced a slight increase in the apoptotic process. In summary, the association can enhance the compound's antitumor effects and establish a higher selectivity for tumor cells, possibly caused by significant mitochondrial damage and antioxidant properties.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Animals , Mice , Vitamin K 3/pharmacology , Reactive Oxygen Species/metabolism , Apoptosis , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Drug Combinations , Cell Line, Tumor , Bone Neoplasms/pathology , Cell Proliferation
2.
Front Dent Med ; 32022 Feb.
Article in English | MEDLINE | ID: mdl-36185572

ABSTRACT

Mineralization of the skeleton occurs by several physicochemical and biochemical processes and mechanisms that facilitate the deposition of hydroxyapatite (HA) in specific areas of the extracellular matrix (ECM). Two key phosphatases, phosphatase, orphan 1 (PHOSPHO1) and tissue-non-specific alkaline phosphatase (TNAP), play complementary roles in the mineralization process. The actions of PHOSPHO1 on phosphocholine and phosphoethanolamine in matrix vesicles (MVs) produce inorganic phosphate (Pi) for the initiation of HA mineral formation within MVs. TNAP hydrolyzes adenosine triphosphate (ATP) and the mineralization inhibitor, inorganic pyrophosphate (PPi), to generate Pi that is incorporated into MVs. Genetic mutations in the ALPL gene-encoding TNAP lead to hypophosphatasia (HPP), characterized by low circulating TNAP levels (ALP), rickets in children and/or osteomalacia in adults, and a spectrum of dentoalveolar defects, the most prevalent being lack of acellular cementum leading to premature tooth loss. Given that the skeletal manifestations of genetic ablation of the Phospho1 gene in mice resemble many of the manifestations of HPP, we propose that Phospho1 gene mutations may underlie some cases of "pseudo-HPP" where ALP may be normal to subnormal, but ALPL mutation(s) have not been identified. The goal of this perspective article is to compare and contrast the loss-of-function effects of TNAP and PHOSPHO1 on the dentoalveolar complex to predict the likely dental phenotype in humans that may result from PHOSPHO1 mutations. Potential cases of pseudo-HPP associated with PHOSPHO1 mutations may resist diagnosis, and the dental manifestations could be a key criterion for consideration.

3.
Biosensors (Basel) ; 12(7)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35884328

ABSTRACT

This report describes the innovative application of high sensitivity Boron-doped nanocrystalline diamond microelectrodes for tracking small changes in Ca2+ concentration due to binding to Annexin-A5 inserted into the lipid bilayer of liposomes (proteoliposomes), which could not be assessed using common Ca2+ selective electrodes. Dispensing proteoliposomes to an electrolyte containing 1 mM Ca2+ resulted in a potential jump that decreased with time, reaching the baseline level after ~300 s, suggesting that Ca2+ ions were incorporated into the vesicle compartment and were no longer detected by the microelectrode. This behavior was not observed when liposomes (vesicles without AnxA5) were dispensed in the presence of Ca2+. The ion transport appears Ca2+-selective, since dispensing proteoliposomes in the presence of Mg2+ did not result in potential drop. The experimental conditions were adjusted to ensure an excess of Ca2+, thus confirming that the potential reduction was not only due to the binding of Ca2+ to AnxA5 but to the transfer of ions to the lumen of the proteoliposomes. Ca2+ uptake stopped immediately after the addition of EDTA. Therefore, our data provide evidence of selective Ca2+ transport into the proteoliposomes and support the possible function of AnxA5 as a hydrophilic pore once incorporated into lipid membrane, mediating the mineralization initiation process occurring in matrix vesicles.


Subject(s)
Diamond , Liposomes , Annexin A5/chemistry , Annexin A5/metabolism , Diamond/metabolism , Lipid Bilayers , Liposomes/chemistry , Microelectrodes
4.
Braz. arch. biol. technol ; 64: e21200714, 2021. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1350270

ABSTRACT

Abstract Background: Qualea grandiflora (QG) (Vochysiaceae), also known as "pau-ferro", "pau-terra" or "pau-de-tucano", is a very common deciduous tree in the Brazilian Cerrado used in traditional medicine to treat inflammations, ulcers, diarrhea, and infections. There are reports in the scientific literature that demonstrate the medicinal effects of the bark and leaf of the QG. However, studies involving this plant are rather imited. Aim of the study: To perform the phytochemical analysis of the QG hydroalcoholic extract (HAE) of leaves, and to investigate it effects on fibroblast and preosteoblasts. Methods: Phytochemical analysis was done by HPLC-DAD. Murine NIH/3T3 fibroblasts and MC3T3-E1 preosteoblasts cell lines (ATCC) were used for the experiments. Cell viability was assessed by the MTT colorimetric assay and the expression of MMP-14 and HIF-1α by immunofluorescence. Results and conclusion: The following compounds were identified by HPLC-DAD, such as quinic acid, ethyl galate, ellagic acid derivatives as O-methylellagic acid O-galloyl, O-methylellagic acid O-deoxyhexoside, galloyl derivatives, flavonol glycoside as kaempferol-O-deoxyhexoside, quercetin-O-deoxyhexoside, myricetin-O-deoxyhexoside and the pentacyclic triterpene arjunglucoside. Cell viability results demonstrated no cytotoxic effects in the studied concentrations. We found in QG HAE some compounds with therapeutic properties that can increase the expression of MMP-14 and HIF-1α, in fibroblasts and preosteoblasts. These data suggest that QG HAE has an action on these two molecules widely involved in physiological conditions, such as collagen remodeling, bone development and growth and pathological processes as HIF signaling in cancer metastasis.

5.
Int J Implant Dent ; 6(1): 46, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32839885

ABSTRACT

PURPOSE: The aim of this study was to investigate the response of osteogenic cell lineage and gingival fibroblastic cells to different surface treatments of grade IV commercially pure Titanium (cpTi) disks. MATERIAL AND METHODS: Grade IV cpTi disks with different surfaces were produced: machined (M), sandblasting (B), sandblasting and acid subtraction (NP), and hydrophilic treatment (ACQ). Surface microtopography characteristics and chemical composition were investigated by scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS). Adhesion and proliferation of SC-EHAD (human surgically-created early healing alveolar defects) and HGF-1 (human gingival fibroblasts) on Ti disks were investigated at 24 and 48 h, and osteogenic differentiation and mineralization were evaluated by assessing alkaline phosphatase (ALP) activity and alizarin red staining, respectively. RESULTS: No significant differences were found among the various surface treatments for all surface roughness parameters, except for skewness of the assessed profile (Rsk) favoring M (p = 0.035 ANOVA). M disks showed a slightly higher (p > 0.05; Kruskal-Wallis/Dunn) adhesion of HGF-1 (89.43 ± 9.13%) than SC-EHAD cells (57.11 ± 17.72%). ACQ showed a significantly higher percentage of SC-EHAD (100%) than HGF-1 (69.67 ± 13.97%) cells adhered at 24 h. SC-EHAD cells expressed increased ALP activity in osteogenic medium at M (213%) and NP (235.04%) surfaces, but higher mineralization activity on ACQ (54.94 ± 4.80%) at 14 days. CONCLUSION: These findings suggest that surface treatment influences the chemical composition and the adhesion and differentiation of osteogenic cells in vitro. CLINICAL RELEVANCE: Hydrophilic surface treatment of grade IV cpTi disks influences osteogenic cell adhesion and differentiation, which might enhance osseointegration.

6.
J Biomed Mater Res B Appl Biomater ; 108(1): 282-297, 2020 01.
Article in English | MEDLINE | ID: mdl-31009176

ABSTRACT

In this work, bone formation/remodeling/maturation was correlated with the presence of multinucleated giant cells (MGCs)/osteoclasts (tartrate-resistant acid phosphatase [TRAP]-positive cells) on the surface of beta-tricalcium phosphate (ß-TCP), sintered deproteinized bovine bone (sDBB), and carbonated deproteinized bovine bone (cDBB) using a maxillary sinus augmentation (MSA) in a New Zealand rabbit model. Microtomographic, histomorphometric, and immunolabeling for TRAP-cells analyses were made at 15, 30, and 60 days after surgery. In all treatments, a faster bone formation/remodeling/maturation and TRAP-positive cells activity occurred in the osteotomy region of the MSA than in the middle and submucosa regions. In the ß-TCP, the granules were rapidly reabsorbed by TRAP-positive cells and replaced by bone tissue. ß-TCP enabled quick bone regeneration/remodeling and full bone and marrow restoration until 60 days, but with a significant reduction in MSA volume. In cDBB and sDBB, the quantity of TRAP-positive cells was smaller than in ß-TCP, and these cells were associated with granule surface preparation for osteoblast-mediated bone formation. After 30 days, more than 80% of granule surfaces were surrounded and integrated by bone tissue without signs of degradation, preserving the MSA volume. Overall, the materials tested in a standardized preclinical model led to different bone formation/remodeling/maturation within the same repair process influenced by different microenvironments and MGCs/osteoclasts. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:282-297, 2020.


Subject(s)
Bone Matrix/chemistry , Bone Regeneration/drug effects , Bone Substitutes/pharmacology , Calcium Phosphates/pharmacology , Giant Cells/metabolism , Osteoclasts/metabolism , Animals , Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Cell Line , Giant Cells/pathology , Male , Mice , Rabbits
7.
Bone ; 125: 74-86, 2019 08.
Article in English | MEDLINE | ID: mdl-31054377

ABSTRACT

The HOXA gene cluster is generally recognized as a pivotal mediator of positional identity in the skeletal system, expression of different orthologues conferring alternative locational phenotype of the vertebrate bone. Strikingly, however, the molecular mechanisms that regulate orthologue-specific expression of different HOXA cluster members in gestating osteoblasts remain largely obscure, but in analogy to the processes observed in acute lymphatic leukemia it is assumed that alternative methylation of HOXA promoter regions drives position specific expression patterns. In an effort to understand HOXA cluster gene expression in osteogenesis we characterize both expression and the epigenetic landscape of the HOXA gene cluster during in vitro osteoblast formation from mesenchymal precursors. We observe that osteoblast formation per se provokes strong upregulation of HOXA gene cluster expression, in particular of midcluster genes, and paradoxal downregulation of HOXA7 and HOXA10. These differences in expression appear related to promoter methylation. LnRNAs HOTAIR and HOTTIP, known to modulate HOXA expression, are also regulated by their promoter methylation processing, but do not correlate with HOXA cluster expression profile. We thus conclude that HOXA expression is profoundly regulated during osteoblast differentiation through canonical methylation-dependent mechanisms but not through the flanking lnRNAs.


Subject(s)
Cell Differentiation/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/metabolism , Animals , Blotting, Western , Cell Differentiation/drug effects , Cell Line , DNA Methylation/drug effects , DNA Methylation/genetics , Gene Expression Regulation, Developmental/drug effects , Homeodomain Proteins/genetics , Humans , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Sulfites/pharmacology
8.
J Ethnopharmacol ; 237: 192-201, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30905790

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Phytotherapy based on plant-derived compounds is an alternative medicinal strategy for the relief of symptoms and the curing of diseases. The leaves of Myracrodruon urundeuva a medicinal plant also known as "aroeira", has been used in traditional medicine as healing, antiulcer and anti-inflammatory to treat skeletal diseases in Brazil, but its role in bone cell toxicity, as well as in bone formation, remains to be established. AIM OF THE STUDY: We sought to determine the in vitro osteogenic effects of a hydroalcoholic M. urundeuva leaves extract in primary human osteoblasts. MATERIALS AND METHODS: Cell viability, reactive oxygen species (ROS) production, alkaline phosphatase (ALP) activity and matrix mineralization were evaluated by MTT assay, DCFH-DA probe, colorimetric-based enzymatic assay and Alizarin Red-staining, respectively. Besides, the matrix metalloproteinase (MMP)-2 and progressive ankylosis protein homolog (ANKH) gene expression were determined by real-time RT-qPCR and MMP-2 activity by zymography. RESULTS: Exposure of osteoblasts to M. urundeuva extract significantly decreased viability and increased reactive oxygen species (ROS) production, regardless of the extract concentration. The M. urundeuva extract at 10 µg/mL also downregulated matrix metalloproteinase (MMP)-2, while upregulating progressive ankylosis protein homolog (ANKH) gene expression. By contrast, the MMP-2 activity was unchanged. The M. urundeuva extract at 10 µg/mL also reduced alkaline phosphatase (ALP) activity and mineralization. CONCLUSIONS: Overall, our findings suggest that the inhibition of osteogenic differentiation and matrix mineralization promoted by M. urundeuva may be due more to an increase in oxidative stress than to the modulation of MMP-2 and ANKH expression.


Subject(s)
Anacardiaceae , Osteoblasts/drug effects , Plant Extracts/pharmacology , Adult , Alkaline Phosphatase/metabolism , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Osteoblasts/metabolism , Plant Leaves , Reactive Oxygen Species/metabolism
9.
Arch Oral Biol ; 97: 245-252, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30414560

ABSTRACT

OBJECTIVES: This study evaluated the level and mechanism of apoptosis in human gingival fibroblasts (HGF) and murine fibroblasts (NIH/3T3) treated with a titanium tetrafluoride (TiF4) varnish compared those treated with a sodium fluoride (NaF) varnish. METHODS: Cells were treated with a TiF4, NaF (both 2.45%F) or placebo varnish for 6 h and were then examined using the TUNEL method. The activities of caspase-3, -8 and -9 were assessed. cDNA for Bax, Bad, Bcl-2 and Fas-L was amplified by quantitative PCR. Bax, Bcl-2 and Fas-L were further detected by western blot analysis. RESULTS: Both fluorides similarly increased the percentage of apoptosis, while they failed to activate caspases. The Bax/Bcl-2 gene expression ratio was not altered by either fluoride treatment regardless of the type of cell. NaF varnish increased the amplification of the Fas-L gene in NIH/3T3 and HGF cells, while treatment with the TiF4 varnish resulted in a lower Bad/Bcl-2 expression ratio compared to that of the control for NIH/3T3 cells, but not for HGF cells. No effect of the fluorides was detected in the protein analysis. CONCLUSIONS: NaF and TiF4, at the studied conditions, similarly induce a low level of apoptosis, with consequent modest activation of the Bcl-2 and Fas-l-dependent signalling pathways. Generally, HGF cells are more susceptible to the fluoride effect than NIH/3T3 cells.


Subject(s)
Apoptosis/drug effects , Cariostatic Agents/pharmacology , Fibroblasts/drug effects , Fluorides/pharmacology , Sodium Fluoride/pharmacology , Titanium/pharmacology , Animals , Blotting, Western , Caspases/metabolism , Humans , In Situ Nick-End Labeling , Mice , NIH 3T3 Cells , Polymerase Chain Reaction , Time Factors
10.
J Periodontol ; 89(11): 1326-1333, 2018 11.
Article in English | MEDLINE | ID: mdl-29846937

ABSTRACT

BACKGROUND: The granulation tissue present in surgically-created early healing sockets has been considered as a possible source of osteoprogenitor cells for periodontal regeneration, as demonstrated in animal studies. However, the in vitro osteogenic properties of tissue removed from human surgically-created early healing alveolar defects (SC-EHAD) remains to be established, being that the aim of this study. METHODS: Surgical defects were created in the edentulous ridge of two systemically healthy adults. The healing tissue present in these defects was removed 21 days later for the establishment of primary culture. The in vitro characteristics of the cultured cells were determined by Armelin method, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, immunohistochemistry, alkaline phosphatase (ALP) activity, mineralization assay, and flow cytometry for detection of stem cells/osteoprogenitor cell markers. RESULTS: Cells were able to adhere to the plastic and assumed spindle-shaped morphology at earlier passages, changing to a cuboidal one with increasing passages. Differences in the proliferation rate were observed with increasing passages, suggesting osteogenic differentiation. ALP and mineralization activities were detected in conventional and osteogenic medium. Fresh samples of SC-EHAD tissue exhibited CD34- and CD45- phenotypes. Cells at later passages (14th) exhibited CD34- , CD45- , CD105- , CD166- , and collagen type I+ phenotype. CONCLUSION: Tissue removed from SC-EHAD is a possible source of progenitor cells.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Adult , Animals , Cell Differentiation , Cells, Cultured , Humans , Stem Cells , Wound Healing
11.
PLoS One ; 12(6): e0179471, 2017.
Article in English | MEDLINE | ID: mdl-28614381

ABSTRACT

OBJECTIVE: Titanium tetrafluoride (TiF4) has shown promising effect in preventing tooth lesions. Therefore, we compared the cytotoxicity of TiF4 with sodium fluoride (NaF) (already applied in Dentistry) considering different fluoride concentrations, pH values and experimental models. MATERIALS AND METHODS: Step 1) NIH/3T3 fibroblasts were exposed to mediums containing NaF or TiF4 (from 0.15 to 2.45% F), both at native and adjusted pH, for 6 h. Step 2) NIH/3T3 were exposed to NaF or TiF4 varnishes with 0.95, 1.95 or 2.45% F (native pH), for 6, 12 or 24 h. We applied MTT (1st and 2nd steps) and Hoescht/PI stain (2nd step) assays. Step 3) NIH/3T3 were exposed to NaF or TiF4 varnish (2.45% F), at native pH, for 6 or 12 h. The cell stiffness was measured by atomic force microscopy (AFM). RESULTS: Step 1) All cells exposed to NaF or TiF4 mediums died, regardless of the F concentration and pH. Step 2) Both varnishes, at 1.90 and 2.45% F, reduced cell viability by similar extents (33-86% at 6 h, 35-93% at 12 h, and 87-98% at 24 h) compared with control, regardless of the type of fluoride. Varnishes with 0.95% F did not differ from control. Step 3) TiF4 and NaF reduced cell stiffness to a similar extent, but only TiF4 differed from control at 6 h. CONCLUSIONS: Based on the results of the 3 experimental steps, we conclude that TiF4 and NaF have similar cytotoxicity. The cytotoxicity was dependent on F concentration and exposure time. This result gives support for testing the effect of TiF4 varnish in vivo.


Subject(s)
Cell Physiological Phenomena/drug effects , Fibroblasts/drug effects , Fluorides/pharmacology , Sodium Fluoride/pharmacology , Titanium/pharmacology , Animals , Cariostatic Agents/pharmacology , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fibroblasts/cytology , Hydrogen-Ion Concentration , Mice , Microscopy, Atomic Force , Models, Theoretical , NIH 3T3 Cells , Time Factors
12.
J Photochem Photobiol B ; 169: 35-40, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28264787

ABSTRACT

Low level laser therapy (LLLT) has been shown to stimulate bone cell metabolism but their impact on the matrix metalloproteinase (MMP) expression and activity is little explored. This study evaluated the influence of LLLT at two different wavelengths, red and infrared, on MC3T3-E1 preosteoblast viability, alkaline phosphatase (ALP) and MMP-2 and -9 activities. To accomplish this, MC3T3-E1 cells were irradiated with a punctual application of either red (660nm; InGaAIP active medium) or infrared (780nm; GaAlAs active medium) lasers both at a potency of 20mW, energy dose of 0.08 or 0.16J, and energy density of 1.9J/cm2 or 3.8J/cm2, respectively. The control group received no irradiation. Cellular viability, ALP and MMP-2 and -9 activities were assessed by MTT assay, enzymatic activity and zymography, respectively, at 24, 48 and 72h. The treatment of cells with both red and infrared lasers significantly increased the cellular viability compared to the non-irradiated control group at 24 and 48h. The ALP activity was also up modulated in infrared groups at 24 and 72h, depending on the energy densities. In addition, the irradiation with red laser at the energy density of 1.9J/cm2 promoted an enhancement of MMP-2 activity at 48 and 72h. However, no differences were observed for the MMP-9 activity. In conclusion, when used at these specific parameters, LLL modulates both preosteoblast viability and differentiation highlighted by the increased ALP and MMP-2 activities induced by irradiation.


Subject(s)
Low-Level Light Therapy , Osteoblasts/cytology , 3T3 Cells , Alkaline Phosphatase/radiation effects , Animals , Cell Differentiation/radiation effects , Cell Survival/radiation effects , Humans , Infrared Rays , Lasers , Light , Matrix Metalloproteinase 2/radiation effects , Matrix Metalloproteinase 9/radiation effects , Mice , Osteoblasts/enzymology
13.
Bauru; s.n; 2017. 125 p. graf, ilus, tab.
Thesis in Portuguese | LILACS, BBO - Dentistry | ID: biblio-885135

ABSTRACT

Os leucotrienos (LTs) são mediadores inflamatórios derivados da via 5- lipoxigenase (5-LO), com contribuição relevante na reabsorção óssea. Neste estudo investigamos o papel dos LTs na diferenciação osteogênica e o seu impacto na osteoclatogênese. Assim, foi avaliado o perfil ósseo dos camundongos 129/Sv (WT) e 5-LO Knockout (5-LO KO) por meio de microtomografia computadorizada, evidenciando maior densidade óssea vertebral e trabéculas mais espessas em machos 5-LO KO. Após isso, osteoblastos primários (OBL) foram isolados e cultivados para determinar a atividade de fosfatase alcalina (ALP) e o potencial de mineralização. Resultados mostraram que OBL KO possui maior atividade de ALP e mineralização, em todos os períodos quando comparados com WT. Em adição, o tratamento com os LTs B4 e D4 inibiu a deposição de cálcio. Os inibidores da síntese de LTs e os antagonistas do BLT1/2 foram efetivos em recuperar a formação dos nódulos mineralizados. A cinética do Alox5 apresentou um aumento da expressão nos períodos de maior diferenciação celular em OBL WT. Além disso, a expressão de OCN, MMPs 2 e 9 e RANKL foram aumentadas em células 5-LO KO em quase todos os períodos avaliados. Em geral, o estímulo com LTs, seus inibidores e antagonistas diminuiu a expressão de Sp7, Col1a1, Opg e MMP-9 e aumentou RANKL em células KO. A sinalização por meio de segundos mensageiros também foi avaliada. Células 5-LO KO apresentam menor concentração de cálcio intracelular (Ca2+i) em relação ao WT. No período de 14 dias, o estímulo com LTD4 inibiu a liberação Ca2+i independente da linhagem, em relação ao controle. Os níveis de cAMP foram menores em OBL 5- LO KO, em todos os grupos tratados ou controle. LTD4 diminuiu a concentração de cAMP, mas não LTB4, em OBL 5-LO KO. O estudo também quantificou a produção de LTB4 e outros eicosanoides em osteoblastos mostrando a sua capacidade de síntese. A análise proteômica revelou 89 proteínas com expressão diminuída em OBL 5-LO KO, de um total de 154, sendo a maioria relacionada ao citoesqueleto e ao metabolismo energético. Também foram identificadas 59 proteínas exclusivas em OBL 5-LO KO e 06 unicamente expressas em células WT, revelando as diferenças intrínsecas de cada animal. O perfil osteoclastogênico de camundongos WT vs. 5-LO KO mostrou diferenças significativas na análise fenotípica, TRAP e na expressão gênica de células derivadas da linhagem monocítica-macrofágica. Após o estímulo com M-CSF e RANKL, as células WT apresentaram osteoclastos gigantes multinucleados, porém, células 5-LO KO apresentaram uma população de células com formas e tamanhos variáveis, e menor grau de maturação. Em adição, os LTsexógenos não modularam a atividade da TRAP. O meio condicionado proveniente dos OBL WT e KO, retardaram o processo de formação dos osteoclastos. A análise da expressão gênica em osteoclastos mostrou diminuição da expressão de Alox5, Il- 1b, Il-6 e TNFa em células 5-LO KO. BLT1/2, CysLt1 e os marcadores da diferenciação Acp5, Ctsk e Nfact1 não apresentaram diferenças entre os animais. Em adição, o LTB4 diminuiu a expressão do Alox5 e a Il-1b foi aumentada em osteoclastos WT. Assim, os resultados demonstram que os LTs são capazes de modular o metabolismo ósseo, e a ausência do gene da 5-LO está relacionada ao maior perfil osteogênico.(AU)


Leukotrienes (LTs) are inflammatory mediators derived from the 5-lipoxygenase (5-LO) pathway, with a relevant contribution in bone resorption. In this study we investigated the role of LTs in osteogenic differentiation and its impact on osteoclastogenesis.Thus, the bone profile of the 129/Sv (WT) and 5-LO Knockout mice (5-LO KO) was evaluated by computerized microtomography, showing higher vertebral bone density and thicker trabeculae in 5-LO KO males. After that, primary osteoblasts (OBL) were isolated and cultured to determine alkaline phosphatase activity (ALP) and mineralization potential. Results showed that OBL KO has higher ALP activity and mineralization, in all periods when compared with WT. In addition, the treatment with LTB4 and LTD4 inhibited calcium deposition. Inhibitors of LT synthesis and BLT1/2 antagonists were effective to recover the mineralized nodules formation. The kinetics of Alox5 showed an increase in expression during cellular differentiation period in WT OBL. In addition, expression of OCN, MMPs 2 and 9 and RANKL were increased in 5- LO KO cells in almost all evaluated periods. In general, the stimulation with LTs, their inhibitors and antagonists decreased the expression of Sp7, Col1a1, Opg and MMP- 9. But it increased the RANKL expression in KO cells. The second messengers signaling was also evaluated. 5-LO KO cells showed lower concentration levels of intracellular calcium (Ca2+ i) when compared to WT cells. In the 14-day period, the LTD4 treatment inhibited the Ca2+i independent of the murine lineage, relative to the control. cAMP levels were lower in OBL 5-LO KO, in all treated or control groups. LTD4 decreased the concentration of cAMP, but not LTB4, in KO cells. The study also quantified the production of LTB4 and other eicosanoids in osteoblasts showing their ability to synthesize those metabolites. The proteomic analysis revealed 89 downregulated proteins in OBL KO, out of a total of 154, most of them related to cytoskeleton and energy metabolism. Also 59 identified proteins were unique in OBL 5-LO KO and 06 exclusively expressed in WT cells, revealing the intrinsic differences of each strain. The osteoclastogenic profile of WT vs. 5-LO KO showed significant differences in phenotypic analysis, TRAP and in the gene expression of cells derived from the monocyte-macrophage-lineage. After M-CSF and RANKL stimulation, WT cells showed multinucleated giant osteoclasts. However, 5-LO KO cells presented a population of cells with variable shapes and sizes, and a lower maturation stage. In addition, exogenous LTs did not modulate TRAP activity. The conditioned medium from OBL WT and 5-LO KO delayed the formation process of osteoclasts. Gene expression analysis in osteoclasts showed decreased expression of Alox 5, Il-1b, Il-6 and TNFα in 5-LO KO cells. BLT1/2, CysLt1 and the osteoclast differentiation markers Acp5, Ctsk and Nfact1 showed no differences between the strains. In addition, LTB4 decreased the expression of Alox5, and IL-1b was increased in WT osteoclasts. Thus, the results demonstrate that the LTs are able to modulate the bone metabolism, and the absence of the 5-LO gene is related to the greater osteogenic profile.(AU)


Subject(s)
Animals , Male , Female , Mice , Leukotrienes/pharmacology , Osteoblasts/drug effects , Osteogenesis/drug effects , Osteogenesis/physiology , 5-Lipoxygenase-Activating Proteins/analysis , Bone Density , Gene Expression , Osteoblasts/physiology , Proteomics , RANK Ligand/analysis , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Time Factors , X-Ray Microtomography
14.
Pharm Biol ; 54(11): 2737-2741, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27226237

ABSTRACT

CONTEXT: "Aroeira" [Myracrodruon urundeuva Allemão (Anacardiaceae)] is a tree whose leaves have been studied for therapeutic purposes in medicine and dentistry. OBJECTIVE: The study chemically identifies the leaf extract of aroeira and determines its effect on human gingival fibroblasts. MATERIALS AND METHODS: An 80% methanol leave extract was obtained by maceration and chemically identified through flow-injection analysis-electrospray ionization-ion trap-tandem mass spectrometry (FIA-ESI-IT-MSn). Cytotoxicity of the aroeira's methanol extract was evaluated in lineage of fibroblasts. Adherent cells were treated with different concentrations of aroeira's methanol extract in the medium: 0.1, 1, 10, 100 and 1000 µg/mL. Control cells were cultivated in the medium only. Analyses were done at 24, 48, 72 and 96 h of culture by neutral red assay; and at 24, 48 and 96 h by crystal violet assay. RESULTS: FIA-ESI-IT-MS analysis determined the presence of compounds, for the first time in the species: quercetin-O-glucuronide and quercetin-O-deoxyhexose-O-glucose in the extract. On one hand, neutral red and crystal violet assay showed a reduction (to 50% up until 100%) of cellular viability of groups of 100 and 1000 µg/mL compared with control at 96 h (p < 0.05). On the other hand, lower concentrations (0.1; 1 and 10 µg/mL) of the extract were similar to that of the control at 96 h (p < 0.05), in general. CONCLUSIONS: In view of the results, we can conclude that the extract of aroeira presents tannins and flavonoids. Furthermore, the extract is capable of modulating the viability of human gingival fibroblasts according to its concentration.


Subject(s)
Anacardiaceae/chemistry , Plant Extracts/pharmacology , Cell Survival/drug effects , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Plant Leaves , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
15.
Lasers Med Sci ; 29(1): 55-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23179312

ABSTRACT

The acceleration of bone regeneration by low-intensity laser irradiation may hold potential benefits in clinical therapy in orthopedics and dentistry. The purpose of this study is to compare the effects of light-emitting diode (LED) and laser on pre-osteoblast MC3T3 proliferation and differentiation. Cells were irradiated with red, infrared, and LED (3 and 5 J/cm(2)). Lasers had a power density of 1 W/cm(2) and irradiation time of 2 and 5 s. LED had a power density of 60 mW/cm(2) and irradiation time of 50 and 83 s. Control group did not receive irradiation. Cell growth was assessed by a colorimetric test (MTT) (24, 48, 72, and 96 h), and cell differentiation was evaluated by alkaline phosphatase (ALP) quantification after growth in osteogenic medium (72 and 96 h and 7 and 14 days). At 24 h, the cell growth was enhanced 3.6 times by LED (5 J/cm(2)), 6.8 times by red laser (3 J/cm(2)), and 10.1 times by red laser (5 J/cm(2)) in relation to control group (p < 0.05). At the other periods, there was no influence of irradiation on cell growth (p > 0.05). The production of ALP was not influenced by irradiation at any period of time (p > 0.05). Low-intensity laser and LED have similar effects on stimulation of cell growth, but no effect on cell differentiation.


Subject(s)
Lasers, Semiconductor/therapeutic use , Osteoblasts/cytology , Osteoblasts/radiation effects , 3T3 Cells , Alkaline Phosphatase/metabolism , Animals , Bone Regeneration/radiation effects , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Light , Low-Level Light Therapy , Mice , Osteoblasts/enzymology , Phototherapy
16.
Photomed Laser Surg ; 31(5): 225-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23639292

ABSTRACT

OBJECTIVE: The aim of this study is to evaluate the effects of red and infrared lasers at high energy densities on pre-osteoblast MC3T3 proliferation and differentiation. BACKGROUND DATA: The acceleration of bone regeneration by low intensity laser irradiation may hold potential benefits in clinical therapy in orthopedics and dentistry. MATERIALS AND METHODS: Cells were irradiated with red (660 nm) and infrared (780 nm) lasers (90 and 150 J/cm2, 40 mW). The control group did not receive irradiation. Cell growth was assessed by a colorimetric test (MTT) (24, 48, 72, 96 h) and cell differentiation was evaluated by alkaline phosphatase (ALP) quantification after growth in osteogenic medium (72, 96 h; 7, 14 days). RESULTS: None of the irradiation groups had an enhancement in cell growth (p<0.05). The production of ALP was not influenced by irradiation at any period of time (p>0.05). CONCLUSIONS: The low intensity laser stimulated neither cell growth nor the production of alkaline phosphatase.


Subject(s)
Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Low-Level Light Therapy , Osteoblasts/radiation effects , Alkaline Phosphatase/metabolism , Humans
17.
Bauru; s.n; 2013. 147 p. tab, ilus, graf.
Thesis in Portuguese | LILACS, BBO - Dentistry | ID: biblio-866939

ABSTRACT

Dentre os vários compostos utilizados na pesquisa e na terapia de doenças osteo-degenerativas, a fototerapia com laseres de baixa potência (LLLT) e os diodos emissores de luz (LEDs) vem sendo investigada com o intuito de avaliar seus efeitos no metabolismo ósseo. Estes, que possuem comprimentos de ondas específicos, atuam na biomodulação das células, funcionando como um agente terapêutico, reequilibrando e normalizando a sua atividade. No entanto, pouco se sabe sobre o efeito dos diferentes espectros na proliferação e diferenciação de osteoblastos humanos, bem como seus efeitos no metabolismo celular como a síntese e a ativação de proteínas sinalizadoras envolvidas nesses processos. Diante disso, o objetivo deste trabalho foi avaliar, comparativamente, a influência da fototerapia com LLLT e LED na proliferação e diferenciação de osteoblastos humanos. Além disso, investigamos o envolvimento da ativação da via de sinalização ERK1,2 nestas respostas, utilizando o seu inibidor específico e/ou avaliando a sua ativação durante a proliferação e após fototerapia. Para esse estudo, osteoblastos humanos (HOAL) foram cultivados em meio de cultura DMEM suplementado com 10% de soro fetal bovino (SFB) e incubados em estufa de CO2. As células foram irradiadas pontualmente com os laseres vermelho (660nm), infravermelho (780nm) e LED (637nm), nas doses de 10, 20 e 50 J/cm2 na potência de 40mW, após adesão celular. Após 24, 48, e 72 horas foram realizados os ensaios de redução do MTT (brometo de 3-(4,5-dimetiltiazol-2-yl)-2,5- difeniltetrazólio) e cristal violeta (CV) para avaliar a viabilidade das células e após 72 horas foi realizada a análise da proliferação por citometria de fluxo nos quais os resultados sugerem aumento de células viáveis ou proliferação quando estimuladas pelos diferentes espectros. Após a verificação do efeito positivo dos laseres e LED na viabilidade e/ou proliferação, foi realizada a análise da ativação da proteína intracelular ERK...


Among the various compounds used in research and bone degenerative diseases therapy, phototherapy with low level laser (LLLT) and light emitting diodes (LEDs) has been investigated in order to evaluate its effects on bone metabolism. Those, who have specific wavelengths, act in biomodulation cells functioning as a therapeutic agent, rebalancing and normalizing their activity. However, little is known about the effect of the different spectra in the proliferation and differentiation of human osteoblasts and their effects on cellular metabolism as well as the synthesis and activation of signaling proteins involved in these processes. Therefore, the aim of this study was to compare the influence of LLLT and LED phototherapy in the proliferation and differentiation of human osteoblasts. In addition, we investigated the involvement of activation of ERK1,2 signaling pathway these responses using its specific inhibitor and/or evaluating their activation during the proliferation and after phototherapy. For this study, human osteoblasts (HOAL) were cultured in DMEM culture medium supplemented with 10 % fetal bovine serum (FBS) and incubated in CO2 incubator . Cells were irradiated with punctual red lasers (660nm), infrared (780nm) and LED (637nm) at doses of 10, 20 and 50 J/cm2 in power 40mW, after cell adhesion. After 24, 48, and 72 hours, MTT assay (- (4,5- dimethylthiazol-2- yl) -2,5 - diphenyltetrazolium bromide 3 ) and violet crystal (CV) were performed to assess the viability of cells and after 72 hours, was performed of proliferation analysis by flow cytometry. The results suggest an increase in viable and proliferation of cells when stimulated by different spectra. After checking the positive effect of lasers and LED viability and/or proliferation, analysis of ERK activation of intracellular protein by western blotting using a specific antibody was performed 10 minutes after the spot irradiation. We show that irradiation of HOAL cells with LLLT at a dose...


Subject(s)
Humans , Cell Differentiation , Osteoblasts/radiation effects , Cell Proliferation/radiation effects , Low-Level Light Therapy/methods , Blotting, Western , Cells, Cultured , Flow Cytometry , Lasers, Semiconductor , Cell Survival/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...