Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 94(1): 58-66, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24239641

ABSTRACT

AIMS: The present study aimed to investigate the potential anti-inflammatory and anti-nociceptive effects of carvacryl acetate, a derivative of carvacrol, in mice. MAIN METHODS: The anti-inflammatory activity was evaluated using various phlogistic agents that induce paw edema, peritonitis model, myeloperoxidase (MPO) activity, pro and anti-inflammatory cytokine levels. Evaluation of antinociceptive activity was conducted through acetic acid-induced writhing, hot plate test, formalin test, capsaicin and glutamate tests, as well as evaluation of motor performance on rotarod test. KEY FINDINGS: Pretreatment of mice with carvacryl acetate (75 mg/kg) significantly reduced carrageenan-induced paw edema (P<0.05) when compared to vehicle-treated group. Likewise, carvacryl acetate (75 mg/kg) strongly inhibited edema induced by histamine, serotonin, prostaglandin E2 and compound 48/80. In the peritonitis model, carvacryl acetate significantly decreased total and differential leukocyte counts, and reduced levels of myeloperoxidase and interleukin-1 beta (IL-1ß) in the peritoneal exudate. The levels of IL-10, an anti-inflammatory cytokine, were enhanced by carvacryl acetate. Pretreatment with carvacryl acetate also decreased the number of acetic acid-induced writhing, increased the latency time of the animals on the hot plate and decreased paw licking time in the formalin, capsaicin and glutamate tests. The pretreatment with naloxone did not reverse the carvacryl acetate-mediated nociceptive effect. SIGNIFICANCE: In conclusion, the current study demonstrated that carvacryl acetate exhibited anti-inflammatory activity in mice by reducing inflammatory mediators, neutrophil migration and cytokine concentration, and anti-nociceptive activity due to the involvement of capsaicin and glutamate pathways.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Monoterpenes/pharmacology , Pain/drug therapy , Animals , Cytokines/metabolism , Disease Models, Animal , Edema/drug therapy , Edema/physiopathology , Immune System Diseases/drug therapy , Inflammation/physiopathology , Inflammation Mediators/metabolism , Leukocyte Disorders/drug therapy , Male , Mice , Pain/physiopathology , Peritonitis/drug therapy , Peritonitis/physiopathology , Peroxidase/drug effects , Peroxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...