Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(28): 16579-16586, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601223

ABSTRACT

Here we report the discovery of Yaravirus, a lineage of amoebal virus with a puzzling origin and evolution. Yaravirus presents 80-nm-sized particles and a 44,924-bp dsDNA genome encoding for 74 predicted proteins. Yaravirus genome annotation showed that none of its genes matched with sequences of known organisms at the nucleotide level; at the amino acid level, six predicted proteins had distant matches in the nr database. Complimentary prediction of three-dimensional structures indicated possible function of 17 proteins in total. Furthermore, we were not able to retrieve viral genomes closely related to Yaravirus in 8,535 publicly available metagenomes spanning diverse habitats around the globe. The Yaravirus genome also contained six types of tRNAs that did not match commonly used codons. Proteomics revealed that Yaravirus particles contain 26 viral proteins, one of which potentially representing a divergent major capsid protein (MCP) with a predicted double jelly-roll domain. Structure-guided phylogeny of MCP suggests that Yaravirus groups together with the MCPs of Pleurochrysis endemic viruses. Yaravirus expands our knowledge of the diversity of DNA viruses. The phylogenetic distance between Yaravirus and all other viruses highlights our still preliminary assessment of the genomic diversity of eukaryotic viruses, reinforcing the need for the isolation of new viruses of protists.


Subject(s)
Acanthamoeba castellanii/virology , DNA Viruses/isolation & purification , DNA Viruses/chemistry , DNA Viruses/classification , DNA Viruses/genetics , Genome, Viral , Phylogeny , Viral Proteins/genetics
2.
Front Microbiol ; 10: 1147, 2019.
Article in English | MEDLINE | ID: mdl-31178847

ABSTRACT

MIMIVIRE is a defense system described in lineage A Mimivirus (Mimiviridae family) that mediates resistance against Zamilon virophage. It is composed of putative helicase and nuclease associated with a gene of unknown function called R349, which contains four 15 bp repeats homologous to the virophage sequence. In a previous study, the silencing of such genes restored virophage susceptibility. Moreover, the CRISPR Cas-4 like activity of the nuclease has recently been characterized. In this study, a recently isolated Mimivirus of lineage A with R349 gene lacking 3 of 4 repeats was demonstrated to be susceptible to Zamilon. To reinforce the importance of the R349 gene in the MIMIVIRE system, we developed and presented, for the first time to our knowledge, a protocol for Mimivirus genomic editing. By knocking out R349 gene in a Mimivirus lineage A, we observed the replication of Zamilon, indicating that this gene is critical in the resistance against this specific group of virophages.

3.
Microbiologyopen ; 8(11): e814, 2019 11.
Article in English | MEDLINE | ID: mdl-30773849

ABSTRACT

Synthetic 1,3-bis(aryloxy)propan-2-amines have been shown in previous studies to possess several biological activities, such as antifungal and antiprotozoal. In the present study, we describe the antibacterial activity of new synthetic 1,3-bis(aryloxy)propan-2-amines against Gram-positive pathogens (Streptococcus pyogenes, Enterococcus faecalis and Staphylococcus aureus) including Methicillin-resistant S. aureus strains. Our compounds showed minimal inhibitory concentrations (MIC) in the range of 2.5-10 µg/ml (5.99-28.58 µM), against different bacterial strains. The minimal bactericidal concentrations found were similar to MIC, suggesting a bactericidal mechanism of action of these compounds. Furthermore, possible molecular targets were suggested by chemical similarity search followed by docking approaches. Our compounds are similar to known ligands targeting the cell division protein FtsZ, Quinolone resistance protein norA and the Enoyl-[acyl-carrier-protein] reductase FabI. Taken together, our data show that synthetic 1,3-bis(aryloxy)propan-2-amines are active against Gram-positive bacteria, including multidrug-resistant strains and can be a promising lead in the development of new antibacterial compounds for the treatment of these infections.


Subject(s)
Anti-Infective Agents/pharmacology , Benzenesulfonates/pharmacology , Diamines/pharmacology , Enterococcus faecalis/drug effects , Staphylococcus aureus/drug effects , Streptococcus pyogenes/drug effects , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Microbial Viability/drug effects
4.
Front Microbiol ; 9: 1041, 2018.
Article in English | MEDLINE | ID: mdl-29875752

ABSTRACT

Putative promoter motifs have been described in viruses belonging to the nucleocytoplasmic large DNA viruses (NCLDVs) group; however, few studies have been conducted to search for promoter sequences in newly discovered amoebal giant viruses. Faustovirus and kaumoebavirus are two Asfarviridae-related giant viruses belonging to the NCLDVs group. The phylogenetic relationships among these viruses led us to investigate if the promoter regions previously identified in the asfarvirus genome could be shared by its amoebal virus relatives. Previous studies demonstrated the role of A/T-rich motifs as promoters of asfarvirus. In this study, we reinforce the importance of A/T rich motifs in asfarvirus and show that the TATTT and TATATA motifs are also shared in abundance by faustovirus and kaumoebavirus. Here, we demonstrate that TATTT and TATATA are mostly present in faustovirus and kaumoebavirus genomic intergenic regions (IRs) and that they are widely distributed at 0 to -100 bp upstream to the start codons. We observed that putative promoter motifs are present as one to dozens of repetitions in IRs of faustovirus, kaumoebavirus, and asfarvirus, which is similar to that described previously for marseilleviruses. Furthermore, the motifs were found in most of the upstream regions of the core genes of faustovirus, kaumoebavirus, and asfarvirus, which suggests that the motifs could already be present in the ancestor of these viruses before the irradiation of this group. Our work provides an in-depth analysis of the putative promoter motifs present in asfarvirus, kaumoebavirus, and faustovirus, which reinforces the relationship among these viruses.

5.
Viruses ; 10(1)2018 01 18.
Article in English | MEDLINE | ID: mdl-29346277

ABSTRACT

Outbreaks of Vaccinia virus (VACV) affecting cattle and humans have been reported in Brazil in the last 15 years, but the origin of outbreaks remains unknown. Although VACV DNA have been already detected in mice (Mus musculus), opossums (Didelphis albiventris) and dogs during VACV zoonotic outbreaks, no transmission to cattle or humans from any of these were reported during Brazilian outbreaks. In this work, we assessed the PCR positivity to VACV in blood samples of cows and other domestic mammals, wild rodents and other wild mammals, and humans from areas with or without VACV infection reports. Our results show the detection of VACV DNA in blood samples of cows, horse and opossums, raising important questions about VACV spread.


Subject(s)
Animal Diseases/epidemiology , Animal Diseases/virology , Animals, Domestic , Animals, Wild , Vaccinia virus , Vaccinia/epidemiology , Vaccinia/virology , Viral Load , Animal Diseases/transmission , Animals , Brazil/epidemiology , Disease Outbreaks , Farms , Genes, Viral , Geography, Medical , Humans , Phylogeny , Public Health Surveillance , Vaccinia/transmission , Vaccinia virus/classification , Vaccinia virus/genetics , Vaccinia virus/isolation & purification
6.
FEMS Microbiol Ecol ; 92(2)2016 Feb.
Article in English | MEDLINE | ID: mdl-26610433

ABSTRACT

The gastrointestinal tract of vertebrates harbors one of the most complex ecosystems known in microbial ecology and this indigenous microbiota almost always has a profound influence on host-parasite relationships, which can enhance or reduce the pathology of the infection. In this context, the impact of the microbiota during the infection of several viral groups remains poorly studied, including the family Poxviridae. Vaccinia virus (VACV) is a member of this family and is the causative agent of bovine vaccinia, responsible for outbreaks that affect bovines and humans. To determine the influence of the microbiota in the development of the disease caused by VACV, a comparative study using a murine model was performed. Germ-free and conventional, 6- to 7-week-old Swiss NIH mice were infected by tail scarification and intranasally with VACV. Moreover, immunosuppression and microbiota reposition were performed, to establish the interactions among the host's immune system, microbiota and VACV. The data demonstrate that the microbiota is essential for the effective immune response of mice against VACV in intranasal inoculation and to control the virus at the primary site of infection. Furthermore, this study is the first to show that Swiss conventional mice are refractory to the intranasal infection of VACV.


Subject(s)
Gastrointestinal Tract/microbiology , Host-Pathogen Interactions/immunology , Microbiota/immunology , Vaccinia virus/immunology , Vaccinia/immunology , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/virology , Humans , Mice , Vaccinia/virology
7.
Arch Virol ; 160(11): 2703-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26239343

ABSTRACT

Vaccinia virus (VACV), the etiological agent of bovine vaccinia (BV), is widespread in Brazil and present in most of the milk-producing regions. We conducted a horizontal study of BV in Bahia, a state of Brazil in which the production of milk is increasing. During 2011, human and bovine clinical samples were collected during outbreaks for BV diagnosis, virus isolation and molecular analysis. We collected data for epidemiological inferences. Vaccinia virus was detected in 87.7% of the analyzed outbreaks, highlighting the effective circulation of VACV in Bahia. The molecular data showed the spreading of group 1 Brazilian VACV to Bahia. We observed a seasonal profile of BV, with its peak in the drier and cooler season. Manual milking was observed in 96 % of the visited properties, showing its importance to viral spread in herds. Under-notification of BV, ineffective animal trade surveillance, and bad milking practices have contributed to the spread of VACV in Brazil.


Subject(s)
Cattle Diseases/virology , Phylogeny , Vaccinia virus/classification , Vaccinia virus/isolation & purification , Vaccinia/veterinary , Vaccinia/virology , Animals , Brazil , Cattle , Cattle Diseases/economics , Cattle Diseases/epidemiology , Cattle Diseases/transmission , Disease Outbreaks/economics , Humans , Vaccinia/economics , Vaccinia/epidemiology , Vaccinia/transmission , Vaccinia virus/genetics , Zoonoses/economics , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...