Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Dairy Res ; 90(2): 186-190, 2023 May.
Article in English | MEDLINE | ID: mdl-37338058

ABSTRACT

The aim in this research paper was to investigate the effect of using calcium monophosphate (MCP) and MCP mixed with commercial phosphates salts, in total or partial replacement of calcium chloride (CaCl2) in the manufacture of Minas Frescal cheese. Initially, model cheeses were made to perform the rheological analysis during the coagulation process. Of these, the five best treatments were chosen to carry out the production of Minas Frescal cheese, used only CaCl2 and MCP, and partial replacements of MCP + polyphosphate, MCP + potassium monophosphate (MKP) and MCP. The cheeses showed no significant difference in physicochemical composition, yield and syneresis, however, the cheese with partial replacement of CaCl2 by MCP + polyphosphate and MCP + MKP showed the highest hardness values, like the control. This demonstrates that it is possible to replace calcium chloride without significant changes in the physicochemical characteristics and yield of Minas Frescal cheese, and it is still possible to modulate the hardness of the cheese produced according to the type of calcium/phosphate source used. This allows the industry to replace the source of calcium in the manufacture of Minas Frescal cheese according to the desired hardness.


Subject(s)
Cheese , Animals , Calcium Chloride , Cheese/analysis , Calcium
2.
Foods ; 11(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35626953

ABSTRACT

The present study aims to describe colloidal and acid gelling properties of mixed suspensions of pea and milk proteins. Mixed protein suspensions were prepared by adding pea protein isolate to rehydrated skimmed milk (3% w/w protein) to generate four mixed samples at 5, 7, 9, and 11% w/w total protein. Skimmed milk powder was also used to prepare four pure milk samples at the same protein concentrations. The samples were analyzed in regard to their pH, viscosity, color, percentage of sedimentable material, heat and ethanol stabilities, and acid gelling properties. Mixed suspensions were darker and presented higher pH, viscosity, and percentage of sedimentable material than milk samples. Heat and ethanol stabilities were similar for both systems and were reduced as a function of total protein concentration. Small oscillation rheology and induced syneresis data showed that the presence of pea proteins accelerated acid gel formation but weakened the final structure of the gels. In this context, the results found in the present work contributed to a better understanding of mixed dairy/plant protein functionalities and the development of new food products.

SELECTION OF CITATIONS
SEARCH DETAIL
...