Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Anim Health Prod ; 55(3): 142, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016138

ABSTRACT

Rumen-protected fat (RPF) was produced in the 1st experimental stage through melt-emulsification technique using buriti oil (BO) as core, at concentrations of 10% (BO10), 20% (BO20), and 30% (BO30) (w/w), and carnauba wax (CW) as encapsulant material. After obtention and characterization, protected fat microspheres were tested in a 2nd experimental stage on the sheep' diet using six castrated 2-year-old male Santa Ines with initial weight 48.9 ± 5.23 kg, fistulated in rumen and distributed in a double Latin square design with 3 treatments × 3 periods, to evaluate rumen pH, temperature, protozoal count, and blood parameters. There was no difference (P > 0.05) among RPF microspheres for microencapsulation yield. However, microencapsulation efficiency increased (P < 0.05) with BO addition ranging from 36 to 61.3% for BO10 and BO30, respectively. The inclusion of BO10 in the sheep's diet did not affect the ruminal dry matter degradability (DMD) of BO over time (P > 0.05); however, BO20 and BO30 had higher (P < 0.05) DMD values than BO10. No significant differences were observed among RPF for rumen pH and temperature (P > 0.05). There was an increase (P < 0.05) in the protozoal population in the rumen environment due to the microencapsulated BO30 inclusion. There was also increase (P < 0.05) in serum albumin, cholesterol, aspartate aminotransferase (ALT), and gamma-glutamyltransferase (GGT), and a reduction (P < 0.05) in serum triglycerides of the sheep when RPF microspheres increased in the diet. Melt-emulsification proved to be a good technique for microencapsulation of buriti oil into the carnauba wax matrix. RPF from buriti oil protected into carnauba wax is recommended for sheep diet because it increases energy density, without adverse effects on the protozoal populations and blood serum metabolites from the bypass effect in the rumen.


Subject(s)
Diet , Rumen , Animals , Male , Animal Feed/analysis , Diet/veterinary , Dietary Supplements , Digestion , Fermentation , Rumen/metabolism , Sheep
2.
Microb Pathog ; 92: 26-29, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26724737

ABSTRACT

The aim of this study was to evaluate the oxidant profile and iron metabolism in serum of dogs infected by Ehrlichia canis. Banked sera samples of dogs were divided into two groups: negative control (n = 17) and infected by E. canis on acute (n = 24), and subclinical (n = 18) phases of the disease. The eritrogram, leucogram, and platelet counts were evaluate as well as iron, ferritin, and transferrin levels, latent iron binding capacity (LIBC), and transferrin saturation index (TSI) concentration. In addition, the advanced oxidation protein products (AOPP) and ferric reducing ability of plasma (FRAP) in sera were also analyzed. Blood samples were examined for the presence of E. canis by PCR techniques. History and clinical signals were recorded for each dog. During the acute phase of the disease, infected animals showed thrombocytopenia and anemia when compared to healthy animals (P < 0.05) as a consequence of lower iron levels. Ferritin and transferrin levels were higher in both phases (acute and subclinical) of the disease. The AOPP and FRAP levels increased in infected animals on the acute phase; however, the opposite occurred in the subclinical phase. We concluded that dogs naturally infected by E. canis showed changes in the iron metabolism and developed an oxidant status in consequence of disease pathophysiology.


Subject(s)
Ehrlichia canis , Ehrlichiosis/veterinary , Iron/metabolism , Oxidation-Reduction , Oxidative Stress , Advanced Oxidation Protein Products/blood , Animals , Dogs , Erythrocyte Indices , Leukocyte Count
SELECTION OF CITATIONS
SEARCH DETAIL
...