Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Agric Food Chem ; 67(16): 4453-4462, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30933503

ABSTRACT

Atrazine is one of the most used herbicides and has been associated with persistent surface and groundwater contamination, and novel formulations derived from nanotechnology can be a potential solution. We used poly(ε-caprolactone) nanoencapsulation of atrazine (NC+ATZ) to develop a highly effective herbicidal formulation. Detailed structural study of interaction between the formulation and Brassica juncea plants was carried out with evaluation of the foliar uptake of nanoatrazine and structural alterations induced in the leaves. Following postemergent treatment, NC+ATZ adhered to the leaf and penetrated mesophyll tissue mainly through the hydathode regions. NC+ATZ was transported directly through the vascular tissue of the leaves and into the cells where it degraded the chloroplasts resulting in herbicidal activity. Nanocarrier systems, such as the one used in this study, have great potential for agricultural applications in terms of maintenance of herbicidal activity at low concentrations and a substantial increase in the herbicidal efficacy.


Subject(s)
Atrazine/chemistry , Herbicides/chemistry , Mustard Plant/drug effects , Nanoparticles/chemistry , Atrazine/metabolism , Atrazine/pharmacology , Drug Compounding , Herbicides/metabolism , Herbicides/pharmacology , Mustard Plant/metabolism , Nanoparticles/metabolism , Nanotechnology , Particle Size , Plant Weeds/drug effects , Plant Weeds/growth & development
2.
J Hazard Mater ; 286: 562-72, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25636059

ABSTRACT

Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem.


Subject(s)
Chitosan/toxicity , Herbicides/toxicity , Humic Substances , Nanoparticles/toxicity , Paraquat/toxicity , Polyphosphates/toxicity , Chlorophyta/drug effects , Chlorophyta/growth & development , Colloids , Onions/drug effects , Onions/genetics
SELECTION OF CITATIONS
SEARCH DETAIL