Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 120: 104543, 2021 08.
Article in English | MEDLINE | ID: mdl-33957570

ABSTRACT

This study evaluated the effect of distinct surface treatments on the fatigue behavior (biaxial flexural fatigue testing) and surface characteristics (topography and roughness) of a 5% mol yttria partially stabilized zirconia ceramic (5Y-PSZ). Disc-shaped specimens of 5Y-PSZ (IPS e.max ZirCAD MT Multi) were manufactured (ISO 6872-2015) and allocated into six groups (n = 15) considering the following surface treatments: Ctrl - no-treatment; GLZ - low-fusing porcelain glaze application; SNF - 5 nm SiO2 nanofilm; AlOx - aluminum oxide particle air-abrasion; SiC - silica-coated aluminum oxide particles (silica-coating); and 7%Si - 7% silica-coated aluminum oxide particles (silica-coating). The biaxial flexural fatigue tests were performed by the step-stress method (20Hz for 10,000 cycles) with a step increment of 50N starting at 100N and proceeding until failure detection. The samples were tested with the treated surface facing down (tensile stress side). Topography, fractography, roughness, and phase content assessments of treated specimens were performed. GLZ group presented the highest fatigue behavior, while AlOx presented the lowest performance, and was only similar to SiC and 7%Si. Ctrl and SNF presented intermediary fatigue behavior, and were also similar to SiC and 7%Si. GLZ promoted a rougher surface, Ctrl and SNF had the lowest roughness, while the air-abrasion groups presented intermediary roughness. No m-phase content was detected (only t and c phases were detected). In conclusion, the application of a thin-layer of low-fusing porcelain glaze, the deposition of silica nanofilms and the air-abrasion with silica-coated alumina particles had no detrimental effect on the fatigue behavior of the 5Y-PSZ, while the air-abrasion with alumina particles damaged the fatigue outcomes.


Subject(s)
Silicon Dioxide , Yttrium , Aluminum Oxide , Ceramics , Dental Stress Analysis , Materials Testing , Surface Properties , Zirconium
2.
J Mech Behav Biomed Mater ; 110: 103962, 2020 10.
Article in English | MEDLINE | ID: mdl-32957253

ABSTRACT

This study evaluated the distinct conditioning effect of the intaglio surface of bonded fully-stabilized zirconia (FSZ) simplified restorations on the mechanical fatigue behavior of the set prior to and after aging. Ceramic disc shaped specimens (Ø= 10 mm and 1 mm thick) were randomly allocated into 14 groups considering: "surface treatments" (Ctrl: no-treatment; PM: universal primer; GLZ: low-fusing porcelain glaze; SNF: 5 nm SiO2 nanofilm deposition; AlOx: air-abrasion with aluminum oxide; SiC: air-abrasion with silica-coated aluminum oxide; 7%Si: air-abrasion with 7% silica-coated aluminum oxide); and "aging" (baseline: 24 h at 37 °C in water; or aged: 90 days at 37 °C in water + 12,000 thermal cycles). The discs were treated, luted with resin cement onto the dentin analog, subjected to aging or not, and then tested under a step-stress fatigue test at 20 Hz, 10,000 cycles/step, step-size of 100N starting at 200N, and proceeding until failure detection. Fractographic, topographic, surface roughness, contact angle, and atomic force microscopy analyzes were performed. The surface treatments at baseline led to statistically similar fatigue failure loads (953N-1313N), except for GLZ (1313N), which was significantly higher than 7%Si (953 N). Meanwhile, Ctrl had 40% pre-test failures (debonding) after aging, and therefore the worst fatigue performance (notable decrease in fatigue results), while all the other groups presented superior and statistically similar fatigue behavior (973-1271N). In fact, when considering baseline Vs aging conditions, stable fatigue results could only be noted when using surface treatments. In conclusion, internal surface treatments of FSZ ceramic restorations are mandatory for fatigue behavior stability after aging the restorative set, while non-treatment induced unstable results.


Subject(s)
Dental Bonding , Silicon Dioxide , Dental Stress Analysis , Materials Testing , Resin Cements , Surface Properties , Zirconium
3.
J Mech Behav Biomed Mater ; 98: 11-19, 2019 10.
Article in English | MEDLINE | ID: mdl-31176090

ABSTRACT

This study assessed the fatigue performance (biaxial flexure fatigue strength), surface characteristics (topography and roughness) and structural stability (t-m phase transformation) of a Y-TZP ceramic subjected to air-abrasion using new powders (7% and 20% silica-coated aluminum oxide particles) in comparison to commercially available powders. Disc-shaped specimens were manufactured (ISO 6872-2015) and randomly allocated into four groups considering the air-abrasion materials: SiC: commercially available silica-coated aluminum oxide; AlOx: commercially available aluminum oxide; 7%Si and 20%Si: experimentally produced materials consisting of 7% and 20% silica-coated AlOx, respectively. Air-abrasion was executed by a blinded researcher (1 cm distance from the tip to the specimen surface, under 2.8 bar pressure for 10 s). The fatigue tests (n = 15) were performed by the staircase method under a piston-on-three-balls assembly. Topography and roughness assessments (n = 30) of abraded samples and fractography of failed discs were performed. The highest fatigue strength (MPa) was observed for 7%Si (887.20 ±â€¯50.54) and SiC (878.16 ±â€¯29.81), while the lowest fatigue strength for 20%Si (773.89 ±â€¯46.44) and AlOx (796.70 ±â€¯46.48). Topography analysis depicted similar surface morphology for all conditions. However, roughness (µm) was only statistically different between 7%Si (Ra = 0.30 ±â€¯0.09; Rz = 2.31 ±â€¯0.63) and SiC (Ra = 0.26 ±â€¯0.04; Rz = 1.99 ±â€¯0.34). Monoclinic phase grains appeared on Y-TZP surface in a similar content (≈11-12%) for the protocols. Fractography showed all failures starting on air-abraded surface/sub-surface defects from the tensile side. In terms of roughness, phase transformation and fatigue, the new 7% silica-coated aluminum oxide presented similar behavior to the commercially available powder. Increasing silica-coating concentration to 20% did not lead to a gentle air-abrasion protocol.


Subject(s)
Air , Aluminum Oxide/chemistry , Ceramics/chemistry , Mechanical Phenomena , Silicon Dioxide/chemistry , Yttrium/chemistry , Zirconium/chemistry , Powders
SELECTION OF CITATIONS
SEARCH DETAIL
...