Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Food Sci ; 89(1): 404-418, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010738

ABSTRACT

Fresh produce have a more limited shelf life than processed ones. Their sensory attributes such as appearance and surface texture are important features in consumer perception and liking. The decomposition of fresh produce, which is caused by enzymes, chemical reactions, and microbial infections, often caused by Colletotrichum species, is inevitable. However, it can be slowed down. Several materials have been developed for this purpose, with an emphasis on active coatings using nanomaterials. In this study, the protective effects of a zein coating containing chitosan nanowhiskers (CSW) for the maintenance of fruit quality were investigated using guava (Psidium guajava L.) as a model fruit. CSW were previously characterized, and their antifungal effects against distinct Colletotrichum species (Colletotrichum asianum, Colletotrichum tropicale, Colletotrichum gloeosporioides, and Colletotrichum brevisporum) were proven. Coatings were characterized by thermogravimetric analysis, optical profilometry, and mechanical properties. Total soluble solids, pH, mass loss, and visual inspection of uncoated and coated guava fruits were also verified during 9 days. Results show that CSW length and aspect ratio decreased for longer extraction times. A similar behavior was found for x-ray diffraction in which peak intensity decreases under the same conditions. CSW degradation (ca. 250-400°C) also depends on extraction time in which more crystalline whiskers are the most thermally stable ones. The addition of CSW did not significantly (p < 0.05) modify the homogeneity and continuity of coating but prevented microbial growth assuring fruit quality during storage. In summary, coatings protected guava fruits from post-harvest spoilage while preserving quality and extending shelf life. PRACTICAL APPLICATION: Fresh foods such as fruits and vegetables have a more limited shelf life than processed ones.


Subject(s)
Chitosan , Edible Films , Zein , Antifungal Agents/pharmacology , Fruit/chemistry , Chitosan/chemistry , Zein/analysis , Food Preservation/methods
2.
J Mol Model ; 29(2): 42, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653546

ABSTRACT

CONTEXT: The reactivity of graphene oxide (GO) with amines is related to the ring-opening of the epoxy groups in its basal surface, as addressed experimentally. Therefore, discussing the hydroxyl/epoxy ratio for GO is relevant to improve the characterization of such material. As the adsorption of Methylene Blue into GO is related to a graphene derivative's oxidation degree (OD), we combined adsorption experimental information and theoretical data to estimate the hydroxyl/epoxy ratio. The theoretical data were compared to the experimental adsorption of Methylene Blue and Indigo Carmine into GO synthesized in our department. Our results show GO systems with hydroxyl/epoxy ratios equal to 0.7, 0.8, and 0.9 are the most representative in which the most coherent model corresponds to OH/EP=0.8 for our GO previously synthesized. METHODS: The GO-MODEL software was developed in the present work to obtain cartesian coordinates of GO systems. We investigated 204 systems comprising models with 486 carbon atoms with the GFN2-xTB semiempirical quantum method. The supramolecular arrangements were constructed with the recently developed UD-APARM program.

3.
Biomater Adv ; 136: 212785, 2022 May.
Article in English | MEDLINE | ID: mdl-35929318

ABSTRACT

Herpetic dermatitis and oral recurrent herpes (ORH) are among the most common human infections. Antiviral drugs such as acyclovir (ACV) are used in the standard treatment for ORH. Despite its therapeutic efficacy, ACV is continuously and repetitively administered in high doses. In this sense, the development of controlled release drug delivery systems such as core-shell fibers have a great potential in the treatment of ORH. In this work, poly(lactic acid)/poly(ethylene glycol) (PLA/PEG) fibers were produced by solution blow spinning (SBS) for the controlled release of ACV encapsulated in the core. PLA/PEG nanofibers containing four different blend ratios (100:0, 90:10, 80:20 and 70:30 wt%) without or with 10 wt% ACV were characterized by scanning electron microscopy (SEM), thermogravimetry (TG) and differential scanning calorimetry (DSC). The ACV release profile for 21 days was accessed by UV-Vis spectroscopy. Static water contact angles of the spun fiber mats were measured by the sessile drop method to evaluate fiber wettability upon contact with skin for transdermal release. Cytotoxicity and antiviral efficacy against Herpes simplex viruses (HSV-1) were evaluated using Vero cells. ACV addition did not impact on morphology, but slightly improved thermal stability of the fibers. Addition of hydrophilic PEG in PLA/PEG blends, however, increased drug release as confirmed by contact angle measurements and release profile. The in vitro tests showed the effectiveness of the drug delivery systems developed in reducing HSV-1 viral titer, which is related to the judicious combination of polymers used in the fibrous mats, in addition to not being cytotoxic to Vero cells. These results show the great potential of PLA/PEG solution blow-spun fibers in the controlled release of ACV to develop practical devices for the treatment of cold sores, while favoring the aesthetic appearance by covering them with a soft tissue patch (fibrous mats).


Subject(s)
Nanofibers , Acyclovir/pharmacology , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Delayed-Action Preparations/pharmacology , Humans , Nanofibers/chemistry , Polyesters/chemistry , Polyethylene Glycols/pharmacology , Vero Cells
4.
ACS Appl Mater Interfaces ; 12(41): 45673-45701, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32937068

ABSTRACT

Functional polymeric micro-/nanofibers have emerged as promising materials for the construction of structures potentially useful in biomedical fields. Among all kinds of technologies to produce polymer fibers, spinning methods have gained considerable attention. Herein, we provide a recent review on advances in the design of micro- and nanofibrous platforms via spinning techniques for biomedical applications. Specifically, we emphasize electrospinning, solution blow spinning, centrifugal spinning, and microfluidic spinning approaches. We first introduce the fundamentals of these spinning methods and then highlight the potential biomedical applications of such micro- and nanostructured fibers for drug delivery, tissue engineering, regenerative medicine, disease modeling, and sensing/biosensing. Finally, we outline the current challenges and future perspectives of spinning techniques for the practical applications of polymer fibers in the biomedical field.


Subject(s)
Biocompatible Materials/chemistry , Biosensing Techniques , Microfluidic Analytical Techniques , Nanofibers/chemistry , Polymers/chemistry , Tissue Engineering , Animals , Drug Delivery Systems , Humans , Particle Size , Surface Properties
5.
Sensors (Basel) ; 20(2)2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31940816

ABSTRACT

Colorimetric sensors developed by the solution blow spinning (SBS) technique have a rapid response to a variation in different physicochemical properties. In this study, polystyrene nanofibrous (PSNF) mats containing the bromothymol blue (BTB) indicator were obtained by SBS for the pH sensing of wine sample. The incorporation of the indicator did not promote changes in fiber diameter but led to the appearance of beads, allowing for the encapsulation of BTB. The halochromic property of BTB was retained in the PSNF material, and the migration tests showed that the indicator mats presented values below the maximum acceptable limit (10 mg dm-2) established by EU Commission Regulation No. 10/2011 for foods with an alcohol content up to 20%. The present study opens the possibility of applying nanostructured materials to innovative food packaging which, through nanosensory zones, change color as a function of the food pH.

6.
Int J Biol Macromol ; 118(Pt B): 1817-1823, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30006012

ABSTRACT

Bio-based chitosan/pectin blend films were prepared by solution casting and fully characterized in terms of their viscoelastic, thermo-mechanical and water affinity properties. Dynamic light scattering and rheological analyses served as a probe that polyelectrolyte complexes were formed through COO-/NH3+ ionic cross-linking, changing the chitosan/pectin solutions from Newtonian to pseudoplastic gel-like systems. The highest degree of ionic cross-linking has been found at a specific mass ratio (chitosan/pectin 25/75) and solid-state data were obtained in detail using dynamic mechanical thermal analysis. Ionic cross-linking was determining on the physical properties of chitosan/pectin blends, which was demonstrated by the thermo-mechanical spectra, high water contact angle and tensile strength of films. The specific thermo-mechanical properties of the chitosan/pectin films can be specifically modulated according to the chitosan/pectin mass ratio to ensure successfully applications in medicine, drug delivery, agricultural and food coatings.


Subject(s)
Chitosan/chemistry , Ions/chemistry , Pectins/chemistry , Dynamic Light Scattering , Elasticity , Mechanical Phenomena , Polymers/chemistry , Rheology , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Viscosity
7.
Acta Biomater ; 51: 161-174, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28069500

ABSTRACT

The control of cell behaviour through material geometry is appealing as it avoids the requirement for complex chemical surface modifications. Significant advances in new technologies have been made to the development of polymeric biomaterials with controlled geometry and physico-chemical properties. Solution blow spinning technique has the advantage of ease of use allowing the production of nano or microfibres and the direct fibre deposition on any surface in situ. Yet, in spite of these advantages, very little is known about the influence of such fibres on biological functions such as immune response and cell migration. In this work, we engineered polymeric fibres composed of either pure poly(lactic acid) (PLA) or blends of PLA and polyethylene glycol (PEG) by solution blow spinning and determined their impact on dendritic cells, highly specialised cells essential for immunity and tolerance. We also determined the influence of fibres on cell adhesion and motility. Cells readily interacted with fibres resulting in an intimate contact characterised by accumulation of actin filaments and focal adhesion components at sites of cell-fibre interactions. Moreover, cells were guided along the fibres and actin and focal adhesion components showed a highly dynamic behaviour at cell-fibre interface. Remarkably, fibres did not elicit any substantial increase of activation markers and inflammatory cytokines in dendritic cells, which remained in their immature (inactive) state. Taken together, these findings will be useful for developing new biomaterials for applications in tissue engineering and regenerative medicine.


Subject(s)
Cell Movement , Dendritic Cells/cytology , Tissue Engineering/methods , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Biomarkers/metabolism , Cell Adhesion , Cell Differentiation , Cell Line , Cytokines/metabolism , Dendritic Cells/ultrastructure , Mice , Phenotype , Solutions , Zyxin/metabolism
8.
J Nanosci Nanotechnol ; 16(6): 6535-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427748

ABSTRACT

Studies on sonochemical hydrolysis of cellulose have been suggested as an alternative route to obtaining cellulose nanoparticles. In this work, the potential use of acid hydrolysis assisted by sonication to obtain cellulose whiskers was studied. Parameters such as acid concentration, hydrolysis time and temperature were investigated to evaluate their effect on the morphological properties of the nanowhiskers, as compared to the conventional extraction process by acid hydrolysis with mechanical stirring. Morphology and degree of crystallinity of the nanowhiskers were studied by atomic force microscopy (AFM) and X-ray diffraction (XRD). Results indicated that the extraction time was reduced from about 45 min to less than 3 min using the same acid concentration and temperature used in conventional acid hydrolysis treatment. Likewise, it was possible, within the range of 30 min, to extract whiskers at room temperature or using half the concentration of acid by raising the temperature to about 80 degrees C. These are promising results towards a more economically viable and ecologically friendly extraction procedure used to obtain cellulose nanowhiskers, since both extraction time and acid concentration, used in nanowhisker extraction, were significantly reduced by replacing mechanical with sonochemical stirring.


Subject(s)
Cellulose/chemistry , Cellulose/isolation & purification , Nanostructures , Sonication , Hydrolysis , Kinetics
9.
J Nanosci Nanotechnol ; 15(8): 5628-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26369129

ABSTRACT

The controlled-release of natural plant oils such as linalool is of interest in therapeutics, cosmetics, and antimicrobial and larvicidal products. The present study reports the release characteristics of linalool encapsulated at three concentrations (10, 15 and 20 wt.%) in poly(lactic acid) nanofibrous membranes produced by electrospinning and solution blow spinning (SBS) as well as the effect of linalool on fiber morphology and structural properties. PLA nanofibrous membranes were characterized by Scanning Electron Microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and contact angle measurements. The average diameters of the electrospun and solution blow spun nanofibers were similar, ranging from 176 to 240 nm. Linalool behaved as a plasticizer to PLA decreasing the glass transition temperature (Tg), melting point (Tm) and crystallization temperature (TC) of PLA. Curves of the release of linalool at 35 °C were non-linear, showing a clear biphasic pattern consistent with one or more Fickian release components. The time required to release 50% of linalool (t1/2) decreased with increasing linalool concentration. The range in t1/2 values for SBS nanofibers was higher (291-1645s) than the t1/2 values for electrospun fibers (76-575s).


Subject(s)
Delayed-Action Preparations/chemical synthesis , Electroplating/methods , Membranes, Artificial , Monoterpenes/chemistry , Nanocapsules/chemistry , Nanofibers/chemistry , Acyclic Monoterpenes , Crystallization/methods , Diffusion , Insecticides/administration & dosage , Insecticides/chemistry , Lactic Acid , Materials Testing , Monoterpenes/administration & dosage , Nanocapsules/administration & dosage , Nanocapsules/ultrastructure , Nanofibers/ultrastructure , Particle Size , Polyesters , Polymers , Rotation , Surface Properties
10.
Mater Sci Eng C Mater Biol Appl ; 48: 372-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25579936

ABSTRACT

In this study poly(lactic acid) (PLA) and polyvinylpyrrolidone (PVP) micro- and nanofiber mats loaded with Copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The Copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/PVP blends containing 20% (wt.%) oil were spun and characterized by scanning electron microscopy (SEM) and by studying the surface contact angle, in vitro release rate, and antimicrobial activity. All compositions evaluated were able to produce continuous and smooth fibers by SBS. The addition of PVP increased fiber diameter, and decreased the surface contact angle. GC analysis demonstrated that the main component of the Copaiba oil was ß-caryophyllene, a known antimicrobial agent. In vitro release tests of Copaiba oil volatiles demonstrated a higher release rate in fibers containing PVP. Fiber mats made from blends containing higher amounts of PVP had greater antimicrobial action against Staphylococcus aureus. The results confirm the potential of the fiber mats for use in controlled drug release and could lead to promising applications in the biomedical field.


Subject(s)
Anti-Infective Agents , Fabaceae/chemistry , Lactic Acid , Nanofibers/chemistry , Plant Oils , Polymers , Povidone/analogs & derivatives , Staphylococcus aureus/growth & development , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Lactic Acid/chemistry , Lactic Acid/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Polyesters , Polymers/chemistry , Polymers/pharmacology , Povidone/chemistry , Povidone/pharmacology
11.
J Nanosci Nanotechnol ; 12(3): 2733-41, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22755116

ABSTRACT

Nanocomposite fibers based on multi-walled carbon nanotubes (MWCNT) and poly(lactic acid) (PLA) were prepared by solution blow spinning (SBS). Fiber morphology was characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Electrical, thermal, surface and crystalline properties of the spun fibers were evaluated, respectively, by conductivity measurements (4-point probe), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), contact angle and X-ray diffraction (XRD). OM analysis of the spun mats showed a poor dispersion of MWCNT in the matrix, however dispersion in solution was increased during spinning where droplets of PLA in solution loaded with MWCNT were pulled by the pressure drop at the nozzle, producing PLA fibers filled with MWCNT. Good electrical conductivity and hydrophobicity can be achieved at low carbon nanotube contents. When only 1 wt% MWCNT was added to low-crystalline PLA, surface conductivity of the composites increased from 5 x 10(-8) to 0.46 S/cm. Addition of MWCNT can slightly influence the degree of crystallinity of PLA fibers as studied by XRD and DSC. Thermogravimetric analyses showed that MWCNT loading can decrease the onset degradation temperature of the composites which was attributed to the catalytic effect of metallic residues in MWCNT. Moreover, it was demonstrated that hydrophilicity slightly increased with an increase in MWCNT content. These results show that solution blow spinning can also be used to produce nanocomposite fibers with many potential applications such as in sensors and biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...