Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Nutr Res ; 662022.
Article in English | MEDLINE | ID: mdl-36405951

ABSTRACT

Background: Açaí (Euterpe oleracea) has a rich nutritional composition, showing nutraceutical and protective effects in several organs. In this study, the effects of an açaí-enriched diet on motor performance, anxiety-like behavior, and memory retention were deeply investigated. Methods: Eight-week male Wistar rats were fed with an Euterpe oleracea (EO) pulp-enriched diet, an olive oil-enriched (OO) diet (polyunsaturated fatty acid [PUFA] fat control diet), or a chow diet for 31 days (28 days pre-treatment and 3 days during behavioral tests). Afterward, animals were submitted to a battery of behavioral tests to evaluate spontaneous motor behavior (open-field test), anxiety-like behavior (elevated plus maze and open-field test), and memory retention (step-down). Oxidative stress in the hippocampus was evaluated by a lipid peroxidation assay. Results: EO-enriched diet did not influence the body weight and food intake but increased the glucose plasmatic level after 31 days under this diet. However, a similar fat-enriched diet stimulated a marked weight gain and reduced the food intake, followed by changes in the plasmatic lipid markers. EO-enriched diet preserved the motor spontaneous performance, increased the exploration in the aversive environment (anxiolytic-like effects), and elevated the latency to step-down (improved memory retention). The EO-enriched diet also reduced the level of lipid peroxidation in the hippocampus. These positive effects of EO-enriched diet can greatly support the usage of this diet as a preventive therapy. Conclusion: Taken together, the current study suggests that Euterpe oleracea-enriched diet promotes anxiolytic-like effects and improves memory consolidation, possibly due to the reduced levels of lipid peroxidation in the hippocampus.

2.
Oxid Med Cell Longev ; 2019: 8419810, 2019.
Article in English | MEDLINE | ID: mdl-31772712

ABSTRACT

Anxiety is a common symptom associated with high caffeine intake. Although the neurochemical mechanisms of caffeine-induced anxiety remain unclear, there are some evidences suggesting participation of oxidative stress. Based on these evidences, the current study is aimed at evaluating the possible protective effect of alpha-tocopherol (TPH) against anxiety-like behavior induced by caffeine (CAF) in zebrafish. Adult animals were treated with CAF (100 mg/kg) or TPH (1 mg/kg)+CAF before behavioral and biochemical evaluations. Oxidative stress in the zebrafish brain was evaluated by a lipid peroxidation assay, and anxiety-like behavior was monitored using light/dark preference and novel tank diving test. Caffeine treatment evoked significant elevation of brain MDA levels in the zebrafish brain, and TPH treatment prevented this increase. Caffeine treatment also induced anxiety-like behavior, while this effect was not observed in the TPH+CAF group. Taken together, the current study suggests that TPH treatment is able to inhibit oxidative stress and anxiety-like behavior evoked by caffeine.


Subject(s)
Antioxidants/therapeutic use , Anxiety/chemically induced , Caffeine/adverse effects , Oxidative Stress/drug effects , alpha-Tocopherol/therapeutic use , Animals , Antioxidants/pharmacology , Disease Models, Animal , Female , Zebrafish , alpha-Tocopherol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...