Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Chemphyschem ; 23(5): e202100856, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34995018

ABSTRACT

Sulphur, not phosphorus, is the only known third-row element capable of experiencing an electrostatic gauche effect with fluorine. Some six-membered rings containing an endocyclic phosphorus atom and a ß-fluorine substituent that can interconvert to axial (gauche relative to phosphorus) and equatorial positions were then analysed. While phosphines do not establish an electrostatic attraction between fluorine and phosphorus, some oxidised forms exhibit surprising stability for the sterically disfavoured axial orientation. Because the nature of this behaviour was not obvious, since an intramolecular hydrogen bond can appear, a phosphonium derivative was further studied and its axial conformation was found to be highly stable. A preference for the gauche arrangement appears even for the acyclic and sterically hindered (2-fluoroethyl)triphenylphosphonium cation. On the other hand, (ethane-1,2-diyl)bis(phosphonium) cations are exclusively in anti conformation due to an (+/+)-electrostatic repulsion between the positively charged phosphonium groups.


Subject(s)
Fluorine , Fluorine/chemistry , Hydrogen Bonding , Molecular Conformation , Static Electricity , X-Rays
2.
Environ Sci Pollut Res Int ; 28(31): 42093-42106, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33791966

ABSTRACT

Water contamination is a common problem, especially considering dyes and drugs disposal. A possible and effective treatment method to remove these organic pollutants from water is photocatalytic reaction. This study aimed to improve the photocatalytic properties of TiO2 using iron oxides (Ti/Fe composite). Different magnetic photocatalysts based on commercial TiO2 were obtained with 30, 50, and 80% (wt./wt.) of TiO2 supported on maghemite. X-ray diffraction with Rietveld refinement confirms the presence of γ-Fe2O3, α-Fe2O3, anatase, and rutile, as well as the relative percentages of the phases present in each photocatalyst. The magnetic properties were certified by VSM and sedimentation kinetics in the presence of a magnetic field. Besides their magnetic properties, UV-vis DRS shows that the obtained photocatalysts presented lower bandgap values when compared with TiO2. These factors allowed the materials to absorb radiation in the visible-light region and the separation from the reaction medium by the application of magnetic field. It was observed an enhancement of photodegradation reaction of methylene blue (MB) and paracetamol (PC). For example, when the content of TiO2 increased from 30 to 80% (wt./wt.), the efficiency increased from 58 to 99% (for MB) and 39 for 80% (for PC) under UV (λ = 254 nm). The reactions carried out with solar radiation showed 56 to 95% efficiency to discolor MB. In addition, the results of sedimentation kinetics and characterization confirmed the goals of the synthesis.


Subject(s)
Methylene Blue , Sunlight , Acetaminophen , Catalysis , Titanium
3.
Environ Sci Pollut Res Int ; 28(5): 5714-5730, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32968906

ABSTRACT

Environmental contamination has been a cause of concern worldwide, being aggravated by anthropogenic activities carried out without the correct disposal of toxic products in the various habitats on our planet. In Brazil, mining companies are responsible for the contamination of large river basins with toxic elements from mining activities. Among these elements, arsenic draws attention because it is highly carcinogenic and found in waters in concentrations above those recommended by regulatory agencies. Here, Fe2(MoO4)3 nanoparticles are synthesized and used as a filter medium in water purification systems contaminated with arsenic. The adsorption kinetics of arsenic by Fe2(MoO4)3 nanoparticles is fast, showing pseudo-second-order rate constants of 0.0044, 0.0080, and 0.0106 g mg-1 min-1 for As3+, As5+, and MMA, respectively. The adsorption isotherms are better adjusted with the Langmuir and Redlich-Peterson models, indicating that the arsenic adsorption occurs in monolayers on the Fe2(MoO4)3 surface. The Fe2(MoO4)3 adsorption capacities determined for the As3+, As5+, and MMA species are 16.1, 23.1, and 23.5 mg g-1, respectively. The Fe2(MoO4)3 filter is efficient in purifying arsenic-contaminated water, reducing its initial concentration from 1000 µg L-1 to levels close to zero. Biological tests indicate that Fe2(MoO4)3 nanoparticles and filtered water have no cytotoxic, genotoxic, and mutagenic risks to human life. Those results suggest that the Fe2(MoO4)3 filter can be used as an efficient and safe technology for the purification of water contaminated by arsenic.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Adsorption , Arsenic/analysis , Biological Assay , Brazil , DNA Damage , Humans , Hydrogen-Ion Concentration , Iron , Kinetics , Molybdenum , Mutagens , Water , Water Pollutants, Chemical/analysis
4.
ACS Omega ; 5(34): 21392-21400, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32905303

ABSTRACT

Furfural chemistry is one of the most promising platforms directly derived from lignocellulose biomass. In this study, a niobium-based catalyst (mNb-bc) was synthesized by a new fast and simple method. This new method uses microemulsion to obtain a catalyst with a high specific surface area (340 m2 g-1), defined mesoporosity, and high acidity (65 µmol g-1). Scanning electron microscopy revealed that mNb-bc has a rough surface. The mNb-bc was used to catalyze the conversion reaction of xylose into 2-furfuraldehyde in a monophasic system using water as a green solvent. This reaction was investigated using a 23 experimental design by varying the temperature, time, and catalyst-to-xylose ratio (CXR). The responses evaluated were xylose conversion (X c), reaction yield (Y), and selectivity to 2-furfuraldehyde (S). The optimized reaction conditions were used to evaluate the reaction kinetics. At milder reaction conditions of 140 °C, 2 h, and a CXR of 10%, mNb-bc led to an X c value of 41.2%, an S value of 77.1%, and a Y value of 31.8%.

5.
Biol Trace Elem Res ; 194(2): 502-513, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31313244

ABSTRACT

The aim of the study was to evaluate if gold-coated superparamagnetic iron oxide nanoparticles (AuSPION) magnetic-targeted to the arthritic articulation of collagen induced arthritis (CIA) rats are able to ameliorate rheumatoid arthritis without producing significant biological adverse effects in comparison to colloidal Au nanoparticles (AuC) and metotrexate (MTX). Male Wistar rats were divided into control; arthritic; AuSPION (150 µg kg-1); AuC (150 µg kg-1) and MTX (2.5 µg kg-1). Treatments were administered thrice every other day by the intraperitoneal route 15 min after all groups had a neodymium magnet coupled to the right ankle joint (kept for 1 h). Paw edema and body weight were measured weekly. Joint sections were evaluated by Haematoxylin & Eosin and immunohistochemistry (TNF-α, IL-1ß). Biomarkers of oxidative stress were used to evaluate toxicity. Among the evaluated treatments, AuSPION led to significant clinical improvements (decreased edema and infiltration by leukocytes as well as less positively immunostained cells for both TNF-α and IL-1ß in synovium) accompanied by a lack of toxicity as indicated by redox state and genotoxicity assays. Our results clearly indicate that the magnetic targeting of AuSPION suppresses joint edema and inflammation, cytokine expression as well as the redox imbalance, thereby contributing to an amelioration of arthritis severity in CIA rats. The results demonstrate for the first time the potentiality of AuSPION administration under a magnetic field as an attractive alternative for future treatments of rheumatic diseases.


Subject(s)
Arthritis, Experimental , Metal Nanoparticles , Animals , Arthritis, Experimental/drug therapy , Cytokines , Gold , Magnetic Iron Oxide Nanoparticles , Magnetic Phenomena , Male , Rats , Rats, Wistar
6.
Chemosphere ; 215: 422-431, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30336319

ABSTRACT

l-Cystine functionalized δ-FeOOH nanoparticles (Cys-δ-FeOOH) were prepared by a cheap and straightforward method for using as an adsorbent of Hg(II) in aqueous solution. X-ray diffraction (XRD), attenuated total reflectance infrared spectroscopy (ATR-IR), and Raman spectroscopy confirmed that Cys-δ-FeOOH was successfully synthesized. Cys-δ-FeOOH with 14 nm crystal size, 34 m2 g-1 surface area, and 9 nm pore size were produced. The functionalization of the δ-FeOOH surface with cysteine decreases the point of zero charge of the iron oxyhydroxide from 8.4 in δ-FeOOH to 5.7 in Cys-δ-FeOOH, which is beneficial for the adsorption of Hg(II) near neutral pH. The maximum Hg(II) adsorption capacity of the δ-FeOOH and Cys-δ-FeOOH at pH 7 were found to be 35 mg g-1 and 217 mg g-1, respectively. The kinetics data were best fitted by a pseudo-second-order model, suggesting chemical adsorption on the surface and pores of Cys-δ-FeOOH nanoparticles. Finally, δ-FeOOH and Cys-δ-FeOOH filters were constructed for purifying mercury-contaminated water. The filters were highly efficient to treat mercury-contaminated water from a Brazilian river, reducing the concentration of mercury in water to values below the allowed limits by the current legislation.


Subject(s)
Cystine/chemistry , Ferric Compounds/chemistry , Mercury/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Brazil , Hydrogen-Ion Concentration , Kinetics , Mercury/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis
7.
Dalton Trans ; 47(32): 10976-10988, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30020278

ABSTRACT

In this work, a two-dimensional coordination polymer was synthesized and the structure was determined by single-crystal X-ray diffraction. The crystal structure belongs to the space group Pna21 and was characterized by Raman and FT-infrared spectroscopy, powder X-ray diffraction and Brunauer-Emmett-Teller surface area analysis. Catalyst activities were evaluated through the synthesis of glycerol carbonate from glycerol and urea using a batch reactor. After the optimization of both reaction and reaction conditions, the activity results showed that the coordination polymer used as a heterogeneous catalyst has good values of conversions and selectivity for the manufacturing of glycerol carbonate in a fine-chemical process. The analysis of powder X-ray diffraction and spectroscopy for the coordination polymer employed, before and after the reaction, shows that some changes have taken place in the crystal structure during the process, in spite of a recovery at the end of the reaction. The advantages and limitations of the coordination polymer were discussed and compared with those of the previous heterogeneous catalysts in the literature.

8.
Environ Sci Pollut Res Int ; 25(28): 27737-27747, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29700754

ABSTRACT

Semiconductors based on Fe/Nb oxides can present both solar sensitivity and high catalytic activity. However, there is still a lack regarding the comparison between different routes to produce Fe/Nb-based solar photocatalysts and the evaluation of the impact of the synthesis operating conditions on the material properties. In this work, Fe/Nb2O5 ratio, type of precipitating agent, presence/absence of washing stage, and temperature of calcination were verified to be the most relevant parameters in the synthesis by the co-precipitation method. These factors led to remarkable differences in the properties and performance of the photocatalysts produced by each distinct synthesis route. Composition, iron species present in the materials, crystallinity characteristics, and pH of the catalysts were affected, leading to different photocatalytic activities under UV-Vis light. Due to their characteristics, the synthesized materials are potential photocatalysts for application in solar processes. Graphical abstract ᅟ.


Subject(s)
Iron/chemistry , Niobium/chemistry , Oxides/chemistry , Oxides/chemical synthesis , Semiconductors , Ultraviolet Rays , Water Purification/methods , Catalysis , Chemical Precipitation , Photochemical Processes
9.
Environ Sci Pollut Res Int ; 25(14): 13857-13867, 2018 May.
Article in English | MEDLINE | ID: mdl-29512010

ABSTRACT

The high toxicity and potential arsenic accumulation in several environments have encouraged the development of technologies for its removal from contaminated waters. However, the arsenic released into aquatic environment comes mainly from extremely acidic mining effluents, making harder to find stable adsorbents to be used in these conditions. In this work, K-jarosite particles were synthesized as a stable adsorbent in acidic medium for eliminating arsenic from contaminated water. The adsorption capacities of K-jarosite for As3+, As5+, and monomethylarsonic acid were 9.45, 12.36, and 8.21 mg g-1, respectively. Most arsenic in water was adsorbed within the first 10 min, suggesting the fast arsenic adsorption kinetics of K-jarosite particles. Because of that, a K-jarosite filter was constructed for purifying water at a constant flow. The K-jarosite filter was highly efficient to treat arsenic-contaminated water from a Brazilian river, reducing the concentration of arsenic in water to near zero. These data suggest the K-jarosite filter can be used as a low-cost technology for purifying arsenic-contaminated water in acidic medium.


Subject(s)
Arsenic/analysis , Arsenicals/analysis , Ferric Compounds/chemistry , Potassium/chemistry , Sulfates/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Filtration/instrumentation , Ions/analysis , Water Purification/instrumentation
10.
Int J Biol Macromol ; 106: 1218-1234, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28851645

ABSTRACT

This study focused on the synthesis and comprehensive characterization of environmentally friendly hydrogel membranes based on carboxymethyl cellulose (CMC) for wound dressing and skin repair substitutes. These new CMC hydrogels were prepared with two degrees of functionalization (DS=0.77 and 1.22) and chemically crosslinked with citric acid (CA) for tuning their properties. Additionally, CMC-based hybrids were prepared by blending with polyethylene glycol (PEG, 10wt.%). The results demonstrated that superabsorbent hydrogels (SAP) were produced with swelling degree typically ranging from 100% to 5000%, which was significantly dependent on the concentration of CA crosslinker and the addition of PEG as network modifier. The spectroscopical characterizations indicated that the mechanism of CA crosslinking was mostly associated with the chemical reaction with CMC hydroxyl groups and that PEG played an important role on the formation of a hybrid polymeric network. These hydrogels presented very distinct morphological features depended on the degree of crosslinking and the surface nanomechanical properties (e.g., elastic moduli) were drastically affected (from approximately 0.08GPa to 2.0GPa) due to the formation of CMC-PEG hybrid nanostructures. These CMC-based hydrogels were cytocompatible considering the in vitro cell viability responses of over 95% towards human embryonic kidney cells (HEK293T) used as model cell line.


Subject(s)
Bandages/microbiology , Biocompatible Materials/chemistry , Carboxymethylcellulose Sodium/chemistry , Polyethylene Glycols/chemistry , Biocompatible Materials/therapeutic use , Carboxymethylcellulose Sodium/therapeutic use , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/therapeutic use , HEK293 Cells , Humans , Hydrogels/chemistry , Hydrogels/therapeutic use , Polyethylene Glycols/therapeutic use , Wound Healing/drug effects
11.
RSC Adv ; 8(19): 10310-10313, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-35540472

ABSTRACT

A new class of polyoxoniobate complex has been synthesized and characterized as a novel anticancer agent for photodynamic therapy. The complex inhibits the growth of chronic myelogenous leukemia cells with an IC50 value of 30 µM, in the dark. However, upon exposure to light (365 nm) there is a fivefold increase in the cytotoxic activity. Light radiation activate the complex with the formation of radical species capable of interacting with DNA according to our experimental and theoretical data.

12.
Environ Technol ; 39(22): 2856-2872, 2018 Nov.
Article in English | MEDLINE | ID: mdl-28805161

ABSTRACT

In this study, new eco-friendly hydrogel adsorbents were synthesized based on carboxymethylcellulose (CMC, degree of substitution [DS] = 0.7) chemically cross-linked with citric acid (CA) using a green process in aqueous solution and applied for the adsorption of methylene blue (MB). Spectroscopic analyses demonstrated the mechanism of cross-linking through the reaction of hydroxyl functional groups from CMC with CA. These CMC hydrogels showed very distinct morphological features dependent on the extension of cross-linking and their nanomechanical properties were drastically increased by approximately 300% after cross-linking with 20% CA (e.g. elastic moduli from 80 ± 15 to 270 ± 50 MPa). Moreover, they were biocompatible using an in vitro cell viability assay in contact with human osteosarcoma-derived cells (SAOS) for 24 h. These CMC-based hydrogels exhibited adsorption efficiency above 90% (24 h) and maximum removal capacity of MB from 5 to 25 mg g-1 depending on the dye concentration (from 100 to 500 mg L-1), which was used as the model cationic organic pollutant. The adsorption of process of MB was well-fit to the pseudo-second-order kinetics model. The desorption of MB by immersion in KCl solution (3 mol L-1, 24 h) showed a typical recovery efficiency of over 60% with conceivable reuse of these CMC-based hydrogels. Conversely, CMC hydrogels repelled methyl orange dye used as model anionic pollutant, proving the mechanism of adsorption by the formation of charged polyelectrolyte/dye complexes.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Adsorption , Carboxymethylcellulose Sodium , Coloring Agents , Humans , Hydrogels
13.
Nanoscale Res Lett ; 12(1): 443, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28683540

ABSTRACT

Quantum dots (QDs) are colloidal semiconductor nanocrystals with unique properties that can be engineered by controlling the nanoparticle size and chemical composition by doping and alloying strategies. However, due to their potential toxicity, augmenting their biocompatibility is yet a challenge for expanding to several biomedical and environmentally friendly applications. Thus, the main goal of this study was to develop composition-tunable and biocompatible Zn x Cd1 - x S QDs using carboxymethylcellulose polysaccharide as direct capping ligand via green colloidal aqueous route at neutral pH and at room temperature for potential biomedical and environmental applications. The ternary alloyed QDs were extensively characterized using UV-vis spectroscopy, photoluminescence spectroscopy (PL), transmission electron microscopy (TEM), X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), and X-ray photoelectrons spectroscopy (XPS). The results indicated that Zn x Cd(1 - x)S QDs were surface stabilized by carboxymethylcellulose biopolymer with spherical morphology for all composition of alloys and narrow sizes distributions ranging from 4 to 5 nm. The XRD results indicated that monophasic ternary alloyed Zn x Cd1 - x S nanocrystals were produced with homogenous composition of the core as evidenced by EELS and XPS analyses. In addition, the absorption and emission optical properties of Zn x Cd1 - x S QDs were red shifted with increasing the amount of Cd2+ in the alloyed nanocrystals, which have also increased the quantum yield compared to pure CdS and ZnS nanoparticles. These properties of alloyed nanomaterials were interpreted based on empirical model of Vegard's law and chemical bond model (CBM). As a proof of concept, these alloyed-QD conjugates were tested for biomedical and environmental applications. The results demonstrated that they were non-toxic and effective fluorophores for bioimaging live HEK293T cells (human embryonic kidney cells) using confocal laser scanning fluorescence microscopy. Moreover, these conjugates presented photocatalytic activity for photodegradation of methylene blue used as model organic industrial pollutant in water. Hence, composition-tunable optical properties of ternary Zn x Cd1 - x S (x = 0-1) fluorescent alloyed QDs was achieved using a facile eco-friendly aqueous processing route, which can offer promising alternatives for developing innovative nanomaterials for applications in nanomedicine and environmental science and technology.

14.
J Environ Sci (China) ; 57: 312-320, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28647251

ABSTRACT

This work describes the synthesis of catalysts based on red mud/polyethylene terephthalate (PET) composites and their subsequent heat treatment under N2 atmosphere. The materials were characterized by scanning electron microscopy (SEM), temperature programmed reduction (TPR), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG) analysis and N2 adsorption/desorption. The catalysts were evaluated in the oxidative desulfurization reaction of dibenzothiophene (DBT) in a biphasic system. The results indicated that the PET impregnation on red mud increased the affinity of the catalyst with the nonpolar phase (fuel), in which the contaminant was dissolved, allowing a higher conversion (up to 80%) and selectivity to the corresponding dibenzothiophene sulfone. The sulfone compound is more polar than DBT and diffused into the polar solvent as indicated by the data obtained via gas chromatography-mass spectrometry (GC-MS).


Subject(s)
Models, Chemical , Polyethylene Terephthalates/chemistry , Adsorption , Catalysis , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared , Thiophenes
15.
Environ Sci Pollut Res Int ; 24(7): 6114-6125, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27040545

ABSTRACT

Fe2O3-SiO2 composites were prepared by impregnation (sample FeIMP) or doping (sample FeDOP) in the structure of porous silica. The dye removal capacity of the materials was investigated through adsorption and oxidation studies of methylene blue and rhodamine B. N2 adsorption/desorption measurements on FeIMP and FeDOP resulted in specific areas of 27 and 235 m2 g-1, respectively. Mössbauer spectroscopy and XRD data detected hematite and maghemite as the iron phases in the samples FeIMP and FeDOP, respectively. Adsorption isotherms and kinetic studies of the dyes were better fitted in DKR model for FeDOP, where the process follows a pseudo-second order with the interparticle diffusion step being the rate-limiting step. On the other hand, FeIMP has better fit in the Langmuir model. Photocatalytic activity was observed in FeDOP under UV irradiation by the presence of reaction-hydroxylated intermediates for MB (m/z = 301) and RhB (m/z = 459). However, the photocatalytic activity was strongly influenced by the adsorption affinity between dye/catalyst. Photogenerated holes are the species responsible for the dye degradation when the adsorption is too strong, while hydroxyl radical action will be favored when the adsorption is not vigorous as detected by ESI-MS. Graphical Abstract Action of photogenerated holes and free electrons into the photocatalytically mechanism of methylene blue degradation over a semiconductor.


Subject(s)
Ferric Compounds/chemistry , Magnets/chemistry , Silicon Dioxide/chemistry , Water Pollutants, Chemical , Water Purification/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
16.
Environ Sci Pollut Res Int ; 23(21): 21969-21979, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27539466

ABSTRACT

The contamination of water with arsenic has aroused concern around the world due to its toxic effects. Thus, the development of low-cost technologies for treating water contaminated with toxic metals is highly advisable. Adsorption is an attractive technology for purification of contaminated water, but it only transfers the contaminant from water to the solid adsorbent, which provokes another problem related to solid residue disposal. In this work, we developed a sustainable method for purifying water contaminated with arsenic by using δ-FeOOH nanoparticles. The adsorption capacities of nanomaterial for As3+ and As5+ species were 40 and 41 mg g-1, respectively, and were highly efficient to purify arsenic-contaminated water from a Brazilian river. The concentration of arsenic in water was close to zero after the water treatment by δ-FeOOH. Once the arsenic is adsorbed, it can be recovered by treatment with NaOH solutions. Approximately 85 % of the total adsorbed arsenic could be recovered and used as a precursor to produce useful material (Ag3AsO4) with excellent photocatalytic activity. It was active under visible light and had a high recyclability for oxidation of rhodamine B. Finally, the simple method described is promising to design sustainable process of environmental remediation with minimum residue generation.


Subject(s)
Arsenic/isolation & purification , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Arsenates/chemistry , Brazil , Hydrogen-Ion Concentration , Oxidation-Reduction , Photolysis , Recycling , Silver/chemistry , Thermodynamics , Water , Water Supply
17.
Sci Rep ; 6: 31406, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27503274

ABSTRACT

The conversion of solar energy into hydrogen fuel by splitting water into photoelectrochemical cells (PEC) is an appealing strategy to store energy and minimize the extensive use of fossil fuels. The key requirement for efficient water splitting is producing a large band bending (photovoltage) at the semiconductor to improve the separation of the photogenerated charge carriers. Therefore, an attractive method consists in creating internal electrical fields inside the PEC to render more favorable band bending for water splitting. Coupling ferroelectric materials exhibiting spontaneous polarization with visible light photoactive semiconductors can be a likely approach to getting higher photovoltage outputs. The spontaneous electric polarization tends to promote the desirable separation of photogenerated electron- hole pairs and can produce photovoltages higher than that obtained from a conventional p-n heterojunction. Herein, we demonstrate that a hole inversion layer induced by a ferroelectric Bi4V2O11 perovskite at the n-type BiVO4 interface creates a virtual p-n junction with high photovoltage, which is suitable for water splitting. The photovoltage output can be boosted by changing the polarization by doping the ferroelectric material with tungsten in order to produce the relatively large photovoltage of 1.39 V, decreasing the surface recombination and enhancing the photocurrent as much as 180%.


Subject(s)
Bismuth/chemistry , Calcium Compounds/chemistry , Hydrogen/chemistry , Oxides/chemistry , Titanium/chemistry , Vanadates/chemistry , Electrochemical Techniques , Photochemical Processes , Semiconductors , Solar Energy , Water
18.
J Hazard Mater ; 314: 304-311, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27149399

ABSTRACT

In this study, we obtained a composite based on carbon/iron oxide from red mud and PET (poly(ethylene terephthalate)) wastes by mechanical mixture (10, 15 and 20wt.% of PET powder/red mud) followed by a controlled thermal treatment at 400°C under air. XRD analyses revealed that the α-Fe2O3 is the main phase formed from red mud. TPR analyses showed that the iron oxide present in the composites undergoes reduction at lower temperature to form Fe(2+) species present in Fe3O4, indicating that the iron oxide in the composite can exhibit greater reactivity in the catalytic processes compared to the original red mud. In fact, catalytic tests showed that the composites presented higher capacity to remove methylene blue dye (MB), presenting about 90% of removal after 24h of reaction. The MB removal was also monitored by mass spectrometer with ionization via electrospray (ESI-MS), which demonstrated the occurrence of the oxidation process, showing the formation of MB oxidation products. The stability of the composites was confirmed after four reuse cycles. The results seem to indicate that PET carbon deposited over the iron oxide from red mud promotes adsorption of the contaminant allowing its contact with the iron atoms and their consequent reaction.

19.
Sci Rep ; 6: 24348, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27076349

ABSTRACT

The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce(3+) and Sm(3+) emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 µGy-30 Gy). The OSL associated with Ce(3+) emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6-7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce(3+), make this material also a strong candidate for 2D OSL dose mapping.


Subject(s)
Cerium/metabolism , Magnesium Oxide/metabolism , Optically Stimulated Luminescence Dosimetry/methods , Samarium/metabolism , Dose-Response Relationship, Radiation , Temperature
20.
Carbohydr Polym ; 146: 455-66, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27112896

ABSTRACT

Designed bioengineered nanocomposites are emerging as a novel class of hybrid materials composed of natural aminopolysaccharides and inorganic semiconductors for biomedical and environmental applications. In this study, it is reported for the first time the synthesis and characterization of water-soluble Bi2S3 quantum dots (QDs) functionalized with O-carboxymethyl chitosan (O-CMC) as capping ligands. UV-vis spectroscopy, transmission electron microscopy, dynamic light scattering, zeta potential, and photoluminescence spectroscopy were used to characterize these nanohybrids. The results proved the hypothesis that O-CMC acted as a pH-dependent multi-functional ligand by altering the mechanisms of nucleation, growth and stabilization of water-soluble colloidal Bi2S3 nanocrystals under acidic, physiological and alkaline conditions, using an eco-friendly aqueous process at room temperature. Moreover, the O-CMC capping ligand and the relative molar ratios of the precursors in solution effectively controlled the diameters of the Bi2S3 QDs, which ranged from 2.8 to 12.8nm, and that exhibited luminescent properties in visible light.


Subject(s)
Bismuth/chemistry , Chitosan/analogs & derivatives , Quantum Dots/chemistry , Sulfides/chemistry , Chitosan/chemistry , Dynamic Light Scattering , Microscopy, Electron, Transmission , Nanoparticles , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...