Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292931

ABSTRACT

The Wnt/ß-catenin signaling pathway dictates cell proliferation and differentiation during embryonic development and tissue homeostasis. Its deregulation is associated with many pathological conditions, including neurodegenerative disease, frequently downregulated. The lack of efficient treatment for these diseases, including Alzheimer's disease (AD), makes Wnt signaling an attractive target for therapies. Interestingly, novel Wnt signaling activating compounds are less frequently described than inhibitors, turning the quest for novel positive modulators even more appealing. In that sense, natural compounds are an outstanding source of potential drug leads. Here, we combine different experimental models, cell-based approaches, neuronal culture assays, and rodent behavior tests with Xenopus laevis phenotypic analysis to characterize quercitrin, a natural compound, as a novel Wnt signaling potentiator. We find that quercitrin potentiates the signaling in a concentration-dependent manner and increases the occurrence of the Xenopus secondary axis phenotype mediated by Xwnt8 injection. Using a GSK3 biosensor, we describe that quercitrin impairs GSK3 activity and increases phosphorylated GSK3ß S9 levels. Treatment with XAV939, an inhibitor downstream of GSK3, impairs the quercitrin-mediated effect. Next, we show that quercitrin potentiates the Wnt3a-synaptogenic effect in hippocampal neurons in culture, which is blocked by XAV939. Quercitrin treatment also rescues the hippocampal synapse loss induced by intracerebroventricular injection of amyloid-ß oligomers (AßO) in mice. Finally, quercitrin rescues AßO-mediated memory impairment, which is prevented by XAV939. Thus, our study uncovers a novel function for quercitrin as a Wnt/ß-catenin signaling potentiator, describes its mechanism of action, and opens new avenues for AD treatments.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Wnt Signaling Pathway , Amyloid beta-Peptides/pharmacology , beta Catenin/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Alzheimer Disease/pathology , Quercetin/pharmacology , Quercetin/therapeutic use
2.
Cancers (Basel) ; 14(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35053565

ABSTRACT

Colorectal cancer (CRC) ranks second in the number of cancer deaths worldwide, mainly due to late diagnoses, which restrict treatment in the potentially curable stages and decrease patient survival. The treatment of CRC involves surgery to remove the tumor tissue, in addition to radiotherapy and systemic chemotherapy sessions. However, almost half of patients are resistant to these treatments, especially in metastatic cases, where the 5-year survival rate is only 12%. This factor may be related to the intratumoral heterogeneity, tumor microenvironment (TME), and the presence of cancer stem cells (CSCs), which is impossible to resolve with the standard approaches currently available in clinical practice. CSCs are APC-deficient, and the search for alternative therapeutic agents such as small molecules from natural sources is a promising strategy, as these substances have several antitumor properties. Many of those interfere with the regulation of signaling pathways at the central core of CRC development, such as the Wnt/ß-catenin, which plays a crucial role in the cell proliferation and stemness in the tumor. This review will discuss the use of naturally occurring small molecules inhibiting the Wnt/ß-catenin pathway in experimental CRC models over the past decade, highlighting the molecular targets in the Wnt/ß-catenin pathway and the mechanisms through which these molecules perform their antitumor activities.

3.
Cancer Chemother Pharmacol ; 87(4): 567-578, 2021 04.
Article in English | MEDLINE | ID: mdl-33471160

ABSTRACT

PURPOSE: 5-Fluorouracil (5-FU), an anti-cancer drug, has been used for hepatoblastoma (HB) chemotherapy in children, who may have impaired  ovarian follicle pool reserve with lasting effects to reproduction. Therefore, this study aimed to investigate 5-FU effects on survival, growth, and morphology of ovarian preantral follicles from C57BL6J young mice. METHODS: Experiments were carried-out both in vivo and in vitro. Mice were treated with 5-FU injection (450 mg/kg i.p) or saline and sacrificed 3 days after to obtain ovaries for histology and molecular biology. Ovaries for in vitro studies were obtained from unchallenged mice and cultured under basic culture medium (BCM) or BCM plus 5-FU (9.2, 46.1, 92.2 mM). Preantral follicles were classified according to developmental stages, and as normal or degenerated. To assess cell viability, caspase-3 immunostaining was performed. Transcriptional levels for apoptosis (Bax, Bcl2, p53, Bax/Bcl2) and Wnt pathway genes (Wnt2 and Wnt4) were also analyzed. Ultrastructural analyses were carried-out on non-cultured ovaries. In addition, ß-catenin immunofluorescence was assessed in mouse ovaries. RESULTS: The percentage of all-types normal follicles was significantly lower after 5-FU challenge. A total loss of secondary normal follicles was found in the 5-FU group. The highest 5-FU concentrations reduced the percentage of cultured normal primordial follicles. Large vacuoles were seen in granulosa cells and ooplasm of preantral follicles by electron microscopy. A significantly higher gene expression for Bax and Bax/Bcl2 ratio was seen after 5-FU treatment. A marked reduction in ß-catenin immunolabeling was seen in 5-FU-challenged preantral follicles. In the in vitro experiments, apoptotic and Wnt gene transcriptions were significantly altered. CONCLUSION: Altogether, our findings suggest that 5-FU can deleteriously affect the ovarian follicle reserve by reducing preantral follicles survival.


Subject(s)
Fluorouracil/toxicity , Ovarian Follicle/drug effects , Animals , Caspase 3/analysis , Female , Immunohistochemistry , Mice , Mice, Inbred C57BL , Ovarian Follicle/pathology , Ovarian Follicle/ultrastructure
4.
Sci Rep ; 10(1): 11681, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669593

ABSTRACT

More than 94% of colorectal cancer cases have mutations in one or more Wnt/ß-catenin signaling pathway components. Inactivating mutations in APC or activating mutations in ß-catenin (CTNNB1) lead to signaling overactivation and subsequent intestinal hyperplasia. Numerous classes of medicines derived from synthetic or natural small molecules, including alkaloids, have benefited the treatment of different diseases, including cancer, Piperine is a true alkaloid, derived from lysine, responsible for the spicy taste of black pepper (Piper nigrum) and long pepper (Piper longum). Studies have shown that piperine has a wide range of pharmacological properties; however, piperine molecular mechanisms of action are still not fully understood. By using Wnt/ß-catenin pathway epistasis experiment we show that piperine inhibits the canonical Wnt pathway induced by overexpression of ß-catenin, ß-catenin S33A or dnTCF4 VP16, while also suppressing ß-catenin nuclear localization in HCT116 cell line. Additionally, piperine impairs cell proliferation and migration in HCT116, SW480 and DLD-1 colorectal tumor cell lines, while not affecting the non-tumoral cell line IEC-6. In summary, piperine inhibits the canonical Wnt signaling pathway and displays anti-cancer effects on colorectal cancer cell lines.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Benzodioxoles/pharmacology , Gene Expression Regulation, Neoplastic , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Wnt Signaling Pathway/drug effects , Wnt3A Protein/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , Alkaloids/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Benzodioxoles/isolation & purification , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , HCT116 Cells , HEK293 Cells , Humans , Piper nigrum/chemistry , Piperidines/isolation & purification , Polyunsaturated Alkamides/isolation & purification , TCF Transcription Factors/genetics , TCF Transcription Factors/metabolism , Wnt Signaling Pathway/genetics , Wnt3A Protein/genetics , Wnt3A Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism
5.
Cancers (Basel) ; 11(12)2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31817828

ABSTRACT

The deregulation of the Wnt/ß-catenin signaling pathway is a central event in colorectal cancer progression, thus a promising target for drug development. Many natural compounds, such as flavonoids, have been described as Wnt/ß-catenin inhibitors and consequently modulate important biological processes like inflammation, redox balance, cancer promotion and progress, as well as cancer cell death. In this context, we identified the chalcone lonchocarpin isolated from Lonchocarpus sericeus as a Wnt/ß-catenin pathway inhibitor, both in vitro and in vivo. Lonchocarpin impairs ß-catenin nuclear localization and also inhibits the constitutively active form of TCF4, dnTCF4-VP16. Xenopus laevis embryology assays suggest that lonchocarpin acts at the transcriptional level. Additionally, we described lonchocarpin inhibitory effects on cell migration and cell proliferation on HCT116, SW480, and DLD-1 colorectal cancer cell lines, without any detectable effects on the non-tumoral intestinal cell line IEC-6. Moreover, lonchocarpin reduces tumor proliferation on the colorectal cancer AOM/DSS mice model. Taken together, our results support lonchocarpin as a novel Wnt/ß-catenin inhibitor compound that impairs colorectal cancer cell growth in vitro and in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...