Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 148(4)2021 02 19.
Article in English | MEDLINE | ID: mdl-33547133

ABSTRACT

Previous studies have shown that Vasohibin 1 (Vash1) is stimulated by VEGFs in endothelial cells and that its overexpression interferes with angiogenesis in vivo Recently, Vash1 was found to mediate tubulin detyrosination, a post-translational modification that is implicated in many cell functions, such as cell division. Here, we used the zebrafish embryo to investigate the cellular and subcellular mechanisms of Vash1 on endothelial microtubules during formation of the trunk vasculature. We show that microtubules within venous-derived secondary sprouts are strongly and selectively detyrosinated in comparison with other endothelial cells, and that this difference is lost upon vash1 knockdown. Vash1 depletion in zebrafish specifically affected secondary sprouting from the posterior cardinal vein, increasing endothelial cell divisions and cell number in the sprouts. We show that altering secondary sprout numbers and structure upon Vash1 depletion leads to defective lymphatic vessel formation and ectopic lymphatic progenitor specification in the zebrafish trunk.


Subject(s)
Cell Cycle Proteins/genetics , Embryonic Development/genetics , Lymphangiogenesis/genetics , Zebrafish/embryology , Zebrafish/genetics , Amino Acid Sequence , Animals , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Conserved Sequence , Evolution, Molecular , Gene Expression Regulation, Developmental , Immunohistochemistry , Microtubules/metabolism , Models, Biological
2.
J Cell Biol ; 217(5): 1651-1665, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29500191

ABSTRACT

Blood flow shapes vascular networks by orchestrating endothelial cell behavior and function. How endothelial cells read and interpret flow-derived signals is poorly understood. Here, we show that endothelial cells in the developing mouse retina form and use luminal primary cilia to stabilize vessel connections selectively in parts of the remodeling vascular plexus experiencing low and intermediate shear stress. Inducible genetic deletion of the essential cilia component intraflagellar transport protein 88 (IFT88) in endothelial cells caused premature and random vessel regression without affecting proliferation, cell cycle progression, or apoptosis. IFT88 mutant cells lacking primary cilia displayed reduced polarization against blood flow, selectively at low and intermediate flow levels, and have a stronger migratory behavior. Molecularly, we identify that primary cilia endow endothelial cells with strongly enhanced sensitivity to bone morphogenic protein 9 (BMP9), selectively under low flow. We propose that BMP9 signaling cooperates with the primary cilia at low flow to keep immature vessels open before high shear stress-mediated remodeling.


Subject(s)
Blood Vessels/physiology , Bone Morphogenetic Proteins/pharmacology , Cilia/metabolism , Endothelial Cells/metabolism , Animals , Blood Vessels/drug effects , Cell Movement/drug effects , Cell Polarity/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Endothelial Cells/cytology , Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Stress, Mechanical , Vascular Remodeling/drug effects , Zebrafish/embryology
3.
Dev Genes Evol ; 224(2): 87-96, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24519327

ABSTRACT

A current hypothesis states that the ancestral limb of arthropods is composed of only two segments. The proximal segment represents the main part of the modern leg, and the distal segment represents the tarsus and claw of the modern leg. If the distal part of the limb is an ancestral feature, one would expect conserved regulatory gene networks acting in distal limb development in all arthropods and possibly even their sister group, the onychophorans. We investigated the expression patterns of six genes known to function during insect distal limb development in the onychophoran Euperipatoides kanangrensis, i.e., clawless (cll), aristaless (al), spineless (ss), zinc finger homeodomain 2 (zfh2), rotund (rn), and Lim1. We find that all investigated genes are expressed in at least some of the onychophoran limbs. The expression patterns of most of these genes, however, display crucial differences to the known insect patterns. The results of this study question the hypothesis of conserved distal limb evolution in arthropods and highlight the need for further studies on arthropod limb development.


Subject(s)
Arthropods/embryology , Arthropods/genetics , Body Patterning/genetics , Extremities/embryology , Gene Expression Regulation, Developmental , Animals , Arthropods/cytology , Embryo, Nonmammalian/metabolism , Models, Biological , Molecular Sequence Data , Sequence Analysis, DNA
4.
Dev Dyn ; 242(8): 964-75, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23703795

ABSTRACT

BACKGROUND: Chondroitin/dermatan sulfate (CS/DS) proteoglycans present in the extracellular matrix have important structural and regulatory functions. RESULTS: Six human genes have previously been shown to catalyze CS/DS polymerization. Here we show that one of these genes, chpf, is represented by two copies in the zebrafish genome, chpfa and chpfb, while the other five human CS/DS glycosyltransferases csgalnact1, csgalnact2, chpf2, chsy1, and chsy3 all have single zebrafish orthologues. The putative zebrafish CS/DS glycosyltransferases are spatially and temporally expressed. Interestingly, overlapping expression of multiple glycosyltransferases coincides with high CS/DS deposition. Finally, whereas the relative levels of the related polysaccharide HS reach steady-state at around 2 days post fertilization, there is a continued relative increase of the CS amounts per larvae during the first 6 days of development, matching the increased cartilage formation. CONCLUSIONS: There are 7 CS/DS glycosyltransferases in zebrafish, which, based on homology, can be divided into the CSGALNACT, CHSY, and CHPF families. The overlap between intense CS/DS production and the expression of multiple CS/DS glycosyltransferases suggests that efficient CS/DS biosynthesis requires a combination of several glycosyltransferases.


Subject(s)
Chondroitin Sulfates/metabolism , Dermatan Sulfate/metabolism , Glycosyltransferases/metabolism , Zebrafish Proteins/metabolism , Animals , Chondroitin , Glycosyltransferases/classification , Glycosyltransferases/genetics , Phylogeny , Zebrafish , Zebrafish Proteins/classification , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...