Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(23)2021 06.
Article in English | MEDLINE | ID: mdl-34078610

ABSTRACT

Recently, we published a novel method used to assess the trophic niches of different coral species and demonstrated that their nutrition varied considerably, with some species highly dependent on their photosynthetic algal symbionts and others able to feed on plankton to meet energetic requirements. Adjustments to the use of this tool are necessary when it is applied to other scientific questions and symbiotic organisms. We respond to a comment highlighting a risk of bias in the methods, discuss suggested adjustments, and propose further refinements to improve method robustness.

2.
Sci Adv ; 6(15): eaaz5443, 2020 04.
Article in English | MEDLINE | ID: mdl-32300659

ABSTRACT

Ocean warming increases the incidence of coral bleaching, which reduces or eliminates the nutrition corals receive from their algal symbionts, often resulting in widespread mortality. In contrast to extensive knowledge on the thermal tolerance of coral-associated symbionts, the role of the coral host in bleaching patterns across species is poorly understood. Here, we applied a Bayesian analysis of carbon and nitrogen stable isotope data to determine the trophic niche overlap between corals and their symbionts and propose benchmark values that define autotrophy, heterotrophy, and mixotrophy. The amount of overlap between coral and symbiont niche was negatively correlated with polyp size and bleaching resistance. Our results indicated that as oceans warm, autotrophic corals lose their competitive advantage and thus are the first to disappear from coral reefs.


Subject(s)
Anthozoa , Coral Reefs , Animals , Carbon , Ecosystem , Environment , Nitrogen , Oceans and Seas , Symbiosis
3.
Sci Adv ; 2(4): e1501252, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27152336

ABSTRACT

Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume's eastward retroflection, conditions the existence of this extensive (~9500 km(2)) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth-ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.


Subject(s)
Anthozoa/chemistry , Coral Reefs , Ecosystem , Animals , Geologic Sediments/chemistry , Porifera , Rivers , South America
4.
PLoS One ; 8(1): e54260, 2013.
Article in English | MEDLINE | ID: mdl-23365655

ABSTRACT

The Abrolhos Bank (eastern Brazil) encompasses the largest and richest coral reefs of the South Atlantic. Coral reef benthic assemblages of the region were monitored from 2003 to 2008. Two habitats (pinnacles' tops and walls) were sampled per site with 3-10 sites sampled within different reef areas. Different methodologies were applied in two distinct sampling periods: 2003-2005 and 2006-2008. Spatial coverage and taxonomic resolution were lower in the former than in the latter period. Benthic assemblages differed markedly in the smallest spatial scale, with greater differences recorded between habitats. Management regimes and biomass of fish functional groups (roving and territorial herbivores) had minor influences on benthic assemblages. These results suggest that local environmental factors such as light, depth and substrate inclination exert a stronger influence on the structure of benthic assemblages than protection from fishing. Reef walls of unprotected coastal reefs showed highest coral cover values, with a major contribution of Montastraea cavernosa (a sediment resistant species that may benefit from low light levels). An overall negative relationship between fleshy macroalgae and slow-growing reef-building organisms (i.e. scleractinians and crustose calcareous algae) was recorded, suggesting competition between these organisms. The opposite trend (i.e. positive relationships) was recorded for turf algae and the two reef-building organisms, suggesting beneficial interactions and/or co-occurrence mediated by unexplored factors. Turf algae cover increased across the region between 2006 and 2008, while scleractinian cover showed no change. The need of a continued and standardized monitoring program, aimed at understanding drivers of change in community patterns, as well as to subsidize sound adaptive conservation and management measures, is highlighted.


Subject(s)
Anthozoa/physiology , Coral Reefs , Animals , Anthozoa/radiation effects , Biodiversity , Biomass , Brazil , Conservation of Natural Resources , Fishes/physiology , Food Chain , Herbivory/physiology , Light , Seaweed/physiology , Seaweed/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...