Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1828(11): 2496-505, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23806650

ABSTRACT

Ascorbyl palmitate (ASC16) is an anionic amphiphilic molecule of pharmacological interest due to its antioxidant properties. We found that ASC16 strongly interacted with model membranes. ASC16 penetrated phospholipid monolayers, with a cutoff near the theoretical surface pressure limit. The presence of a lipid film at the interface favored ASC16 insertion compared with a bare air/water surface. The adsorption and penetration time curves showed a biphasic behavior: the first rapid peak evidenced a fast adsorption of charged ASC16 molecules to the interface that promoted a lowering of surface pH, thus partially neutralizing and compacting the film. The second rise represented an approach to the equilibrium between the ASC16 molecules in the subphase and the surface monolayer, whose kinetics depended on the ionization state of the film. Based on the Langmuir dimiristoylphosphatidylcholine+ASC16 monolayer data, we estimated an ASC16 partition coefficient to dimiristoylphosphatidylcholine monolayers of 1.5×10(5) and a ΔGp=-6.7kcal·mol(-1). The rheological properties of the host membrane were determinant for ASC16 penetration kinetics: a fluid membrane, as provided by cholesterol, disrupted the liquid-condensed ASC16-enriched domains and favored ASC16 penetration. Subphase pH conditions affected ASC16 aggregation in bulk: the smaller structures at acidic pHs showed a faster equilibrium with the surface film than large lamellar ones. Our results revealed that the ASC16 interaction with model membranes has a highly complex regulation. The polymorphism in the ASC16 bulk aggregation added complexity to the equilibrium between the surface and subphase form of ASC16, whose understanding may shed light on the pharmacological function of this drug.


Subject(s)
Ascorbic Acid/analogs & derivatives , Dimyristoylphosphatidylcholine/chemistry , Rheology , Static Electricity , Adsorption , Ascorbic Acid/chemistry , Hydrogen-Ion Concentration , Kinetics
2.
Biochim Biophys Acta ; 1798(7): 1309-23, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20067759

ABSTRACT

In recent years, new evidence in biomembrane research brought about a holistic, supramolecular view on membrane-mediated signal transduction. The consequences of sphingomyelinase (SMase)-driven formation of ceramide (Cer) at the membrane interface involves reorganization of the lateral membrane structure of lipids and proteins from the nm to the mum level. In this review, we present recent insights about mechanisms and features of the SMase-mediated formation of Cer-enriched domains in model membranes, which have been elucidated through a combination of microscopic techniques with advanced image processing algorithms. This approach extracts subtle morphological and pattern information beyond the visual perception: since domain patterns are the consequences of subjacent biophysical properties, a reliable quantitative description of the supramolecular structure of the membrane domains yields a direct readout of biophysical properties which are difficult to determine otherwise. Most of the information about SMase action on simple lipid interfaces has arisen from monolayer studies, but the correspondence to lipid bilayer systems will also be discussed. Furthermore, the structural changes induced by sphingomyelinase action are not fully explained just by the presence of ceramide but by out-of equilibrium surface dynamics forcing the lipid domains to adopt transient supramolecular pattern with explicit interaction potentials. This rearrangement responds to a few basic physical properties like lipid mixing/demixing kinetics, electrostatic repulsion and line tension. The possible implications of such transient codes for signal transduction are discussed for SMase controlled action on lipid interfaces.


Subject(s)
Ceramides/chemistry , Image Processing, Computer-Assisted , Membrane Microdomains/chemistry , Membranes, Artificial , Models, Chemical , Sphingomyelin Phosphodiesterase/chemistry , Kinetics , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL