Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 219: 114901, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35780529

ABSTRACT

Reduced nicotinamide adenine dinucleotide phosphate (NADPH) participates in several anabolic and catabolic pathways, being essential in numerous biochemical reactions involving energy release. Most of these reactions require a high amount of NADPH, which can be expensive from an industry point of view. Thus, biotechnology industries developed a great interest in NADPH production. Currently, there are different ways to obtain NADPH in situ, however, the most common is by enzymatic reactions, known as generator systems. Although this approach can be beneficial in terms of cost, the major drawback is the impossibility of reusing the enzyme. To overcome this, enzyme immobilization is a proven alternative. Herein, we report the use of glucose-6-phosphate dehydrogenase immobilized onto magnetic beads (G6PDH-Mb) through glutaraldehyde coupling to produce high amounts of NADPH. The G6PDH-Mbs were kinetically characterized showing a sigmoidal curve. Besides, the stability was evaluated, and their reuse was demonstrated for a period superior to 40 days. The G6PDH-Mb was used to in situ production of the NADPH metabolism experiments, using human liver microsome solutions and either albendazole or fiscalin B as model targets. The production of in vitro metabolites from albendazole and fiscalin B was evaluated by comparing the use of NADPH generated in situ with those obtained by commercial NADPH. Moreover, the activity of the G6PDH-Mb was monitored after using it for five consecutive albendazole metabolism reactions, with only a minor decrease in the enzyme activity (3.58 ± 1.67%) after the fifth time of use. The higher concentration obtained when using the designed G6PDH-Mb generator system demonstrated proof of the concept and its applicability.


Subject(s)
Albendazole , Glucosephosphate Dehydrogenase , Glucosephosphate Dehydrogenase/metabolism , Humans , Magnetic Phenomena , NADP/metabolism
2.
Front Chem ; 10: 836478, 2022.
Article in English | MEDLINE | ID: mdl-35464220

ABSTRACT

Cardiovascular diseases (CVDs) are noncommunicable diseases known for their complex etiology and high mortality rate. Oxidative stress (OS), a condition in which the release of free radical exceeds endogenous antioxidant capacity, is pivotal in CVC, such as myocardial infarction, ischemia/reperfusion, and heart failure. Due to the lack of information about the implications of OS on cardiovascular conditions, several methodologies have been applied to investigate the causes and consequences, and to find new ways of diagnosis and treatment as well. In the present study, cardiac dysfunction was evaluated by analyzing cells' alterations with untargeted metabolomics, after simulation of an oxidative stress condition using hydrogen peroxide (H2O2) in H9c2 myocytes. Optimizations of H2O2 concentration, cell exposure, and cell recovery times were performed through MTT assays. Intracellular metabolites were analyzed right after the oxidative stress (oxidative stress group) and after 48 h of cell recovery (recovery group) by ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) in positive and negative ESI ionization mode. Significant alterations were found in pathways such as "alanine, aspartate and glutamate metabolism", "glycolysis", and "glutathione metabolism", mostly with increased metabolites (upregulated). Furthermore, our results indicated that the LC-MS method is effective for studying metabolism in cardiomyocytes and generated excellent fit (R2Y > 0.987) and predictability (Q2 > 0.84) values.

3.
Eur J Pharm Sci ; 165: 105939, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34284097

ABSTRACT

Forced degradation tests are studies used to assess the stability of active pharmaceutical ingredients (APIs) and their formulations. These tests are performed submitting the API under extreme conditions in order to know the main degradation products in a short period of time. The results of these studies are used to assess the degradation susceptibility of APIs and to validate chromatographic analytical methods. However, most of degradation studies are performed using one-factor-at-the-time (OFAT) which does not consider the interactions between degradation variables. This work proposes the use of Design of Experiment (DoE) approach in forced degradation of albendazole (ABZ). It was used a central composite design (CCD) to evaluate the forced degradation in a multivariate way. Experiments were performed taking into account the variables pH, temperature, oxidizing agent (H2O2) and UV radiation. It was verified the influence of the variables and their interactions on the ABZ degradation. The ABZ oxidation showed to be the main degradation route for ABZ, which is strongly influenced by the temperature. The hydrolysis was relevant at alkaline medium and high temperature. LC-IT-MSn was used to identify the degradation products. It was found three known degradation products (albendazole-2-amino, albendazole sulfoxide and albendazole sulfone) and a new derivate of albendazole molecule (albendazole sulfoxide with a chlorine). This last one was isolated and characterized by UPLC-QToF-MS and NMR analyses.


Subject(s)
Anthelmintics , Pharmaceutical Preparations , Albendazole , Chromatography, Liquid , Drug Compounding , Hydrogen Peroxide
4.
Drug Metab Dispos ; 43(12): 1905-16, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26374173

ABSTRACT

Montelukast has been recommended as a selective in vitro and in vivo probe of cytochrome P450 (P450) CYP2C8 activity, but its selectivity toward this enzyme remains unclear. We performed detailed characterization of montelukast metabolism in vitro using human liver microsomes (HLMs), expressed P450s, and uridine 5'-diphospho-glucuronosyltransferases (UGTs). Kinetic and inhibition experiments performed at therapeutically relevant concentrations reveal that CYP2C8 and CYP2C9 are the principal enzymes responsible for montelukast 36-hydroxylation to 1,2-diol. CYP3A4 was the main catalyst of montelukast sulfoxidation and stereoselective 21-hydroxylation, and multiple P450s participated in montelukast 25-hydroxylation. We confirmed direct glucuronidation of montelukast to an acyl-glucuronide. We also identified a novel peak that appears consistent with an ether-glucuronide. Kinetic analysis in HLMs and experiments in expressed UGTs indicate that both metabolites were exclusively formed by UGT1A3. Comparison of in vitro intrinsic clearance in HLMs suggest that direct glucuronidation may play a greater role in the overall metabolism of montelukast than does P450-mediated oxidation, but the in vivo contribution of UGT1A3 needs further testing. In conclusion, our in vitro findings provide new insight toward montelukast metabolism. The utility of montelukast as a probe of CYP2C8 activity may be compromised owing to involvement of multiple P450s and UGT1A3 in its metabolism.


Subject(s)
Acetates/metabolism , Cytochrome P-450 Enzyme System/metabolism , Glucuronosyltransferase/metabolism , Microsomes, Liver/metabolism , Quinolines/metabolism , Acetates/chemistry , Cyclopropanes , Dose-Response Relationship, Drug , Humans , Quinolines/chemistry , Sulfides , Tandem Mass Spectrometry/methods
5.
Bioanalysis ; 1(3): 577-94, 2009 Jun.
Article in English | MEDLINE | ID: mdl-21083154

ABSTRACT

This review presents an update on the use of restricted-access materials (RAMs) for direct injection of biological samples. The fundamental improvements in the preparation of tailored RAMs and the diversity of applications with these phases are presented. Insights into diminishing the matrix effect by the use of RAM supports in methods by LC-MS and into the low number of methods for enantiomeric separations by direct injections of biological samples are addressed. The diversity of systems that incorporate RAMs for selective sample clean-up or fractionation in proteome and peptidome analysis is also covered.


Subject(s)
Body Fluids/chemistry , Chromatography, High Pressure Liquid/methods , Pharmaceutical Preparations/blood , Pharmaceutical Preparations/urine , Animals , Cattle , Humans , Polymers/chemistry , Rats , Stereoisomerism , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...