Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
JoVE, v. 200, e65737. out. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5136

ABSTRACT

Scorpion envenomation is a public health problem in several tropical and subtropical countries. Tityus serrulatus Lutz and Mello, 1922 (Brazilian yellow scorpion) are responsible for approximately 150,000 envenoming cases per year in Brazil, of which 10% require antivenom treatment to reverse life-threatening venom effects. Therefore, thousands of T. serrulatus individuals are maintained under controlled captivity conditions for venom extraction, subsequently used in the production of the national supply of scorpion antivenom. Instituto Butantan is the main antivenom-manufacturing laboratory in Brazil, providing about 70,000 vials of scorpion antivenom for the Brazilian health system. Thus, the husbandry protocols and venom extraction methodologies are key points for the success of large-scale, standardized venom production. The objective of this article is to describe the captivity protocols of T. serrulatus husbandry, encompassing the husbandry routine and the venom extraction procedures, following good manufacturing practices, and ensuring animal welfare. These practices allow for the maintenance of up to 20,000 animals in captivity, with a routine of 3,000 to 5,000 scorpions milked monthly according to antivenom manufacturing demand, achieving an average of 90% of positive extraction.

2.
Sci Rep, v. 12, 3890, mar. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4257

ABSTRACT

The new outbreak of coronavirus disease 2019 (COVID-19) has infected and caused the death of millions of people worldwide. Intensive efforts are underway around the world to establish effective treatments. Immunoglobulin from immunized animals or plasma from convalescent patients might constitute a specific treatment to guarantee the neutralization of the virus in the early stages of infection, especially in patients with risk factors and a high probability of progressing to severe disease. Worldwide, a few clinical trials using anti-SARS-CoV-2 immunoglobulins from horses immunized with the entire spike protein or fragments of it in the treatment of patients with COVID-19 are underway. Here, we describe the development of an anti-SARS-CoV-2 equine F(ab′)2 immunoglobulin using a newly developed SARS-CoV-2 viral antigen that was purified and inactivated by radiation. Cell-based and preclinical assays showed that the F(ab′)2 immunoglobulin successfully neutralizes the virus, is safe in animal models, and reduces the severity of the disease in a hamster model of SARS-CoV-2 infection and disease.

3.
Nat Commun ; 12(1): 6197, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707161

ABSTRACT

Rapid development of COVID-19 vaccines has helped mitigating SARS-CoV-2 spread, but more equitable allocation of vaccines is necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine candidate based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here, we show that the NDV vector expressing an optimized spike antigen (NDV-HXP-S) is a versatile vaccine inducing protective antibody responses. NDV-HXP-S can be administered intramuscularly as inactivated vaccine or intranasally as live vaccine. We show that NDV-HXP-S GMP-produced in Vietnam, Thailand and Brazil is effective in the hamster model. Furthermore, we show that intramuscular vaccination with NDV-HXP-S reduces replication of tested variants of concerns in mice. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters.


Subject(s)
Newcastle disease virus/immunology , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Female , Mice , Mice, Inbred BALB C , Newcastle disease virus/metabolism , SARS-CoV-2/pathogenicity , Vaccines, Attenuated/therapeutic use
4.
Biochem Biophys Res Commun ; 545: 145-149, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33550095

ABSTRACT

In March 2013 it was reported by the World Health Organization (WHO) the first cases of human infections with avian influenza virus A (H7N9). From 2013 to December 2019, 1568 cases have been reported with 616 deaths. H7N9 infection has been associated with high morbidity and mortality rates, and vaccination is currently the most effective way to prevent infections and consequently flu-related severe illness. Developing and producing vaccines against pandemic influenza viruses is the main strategy for a response to a possible pandemic. This study aims to present the production of three industrial lots under current Good Manufacturing Practices (cGMP) of the active antigen used to produce the pandemic influenza vaccine candidate against A(H7N9). These batches were characterized and evaluated for quality standards and tested for immunogenicity in mice. The average yield was 173.50 ± 7.88 µg/mL of hemagglutinin and all the preparations met all the required specifications. The formulated H7N9 vaccine is poorly immunogenic and needs to be adjuvanted with an oil in water emulsion adjuvant (IB160) to achieve a best immune response, in a prime and in a boost scheme. These data are important for initial production planning and preparedness in the case of a H7N9 pandemic.


Subject(s)
Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/biosynthesis , Influenza, Human/prevention & control , Pandemics/prevention & control , Animals , Antigens, Viral/biosynthesis , Antigens, Viral/immunology , Drug Compounding/methods , Drug Compounding/statistics & numerical data , Drug Industry/standards , Female , Humans , Influenza Vaccines/immunology , Influenza Vaccines/isolation & purification , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Vaccines, Inactivated/biosynthesis , Vaccines, Inactivated/immunology , Vaccines, Inactivated/isolation & purification
5.
Nat Commun, v. 12, 6197, out. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4045

ABSTRACT

Rapid development of COVID-19 vaccines has helped mitigating SARS-CoV-2 spread, but more equitable allocation of vaccines is necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine candidate based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here, we show that the NDV vector expressing an optimized spike antigen (NDV-HXP-S) is a versatile vaccine inducing protective antibody responses. NDV-HXP-S can be administered intramuscularly as inactivated vaccine or intranasally as live vaccine. We show that NDV-HXP-S GMP-produced in Vietnam, Thailand and Brazil is effective in the hamster model. Furthermore, we show that intramuscular vaccination with NDV-HXP-S reduces replication of tested variants of concerns in mice. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters.

6.
Biochem Biophys Res Commun, v. 545, p. 145-149, mar. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3533

ABSTRACT

In March 2013 it was reported by the World Health Organization (WHO) the first cases of human infections with avian influenza virus A (H7N9). From 2013 to December 2019, 1568 cases have been reported with 616 deaths. H7N9 infection has been associated with high morbidity and mortality rates, and vaccination is currently the most effective way to prevent infections and consequently flu-related severe illness. Developing and producing vaccines against pandemic influenza viruses is the main strategy for a response to a possible pandemic. This study aims to present the production of three industrial lots under current Good Manufacturing Practices (cGMP) of the active antigen used to produce the pandemic influenza vaccine candidate against A(H7N9). These batches were characterized and evaluated for quality standards and tested for immunogenicity in mice. The average yield was 173.50 ± 7.88 μg/mL of hemagglutinin and all the preparations met all the required specifications. The formulated H7N9 vaccine is poorly immunogenic and needs to be adjuvanted with an oil in water emulsion adjuvant (IB160) to achieve a best immune response, in a prime and in a boost scheme. These data are important for initial production planning and preparedness in the case of a H7N9 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...