Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119734, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642724

ABSTRACT

Copper (Cu) dyshomeostasis has been linked to obesity and related morbidities and also to aging. Cu levels are higher in older or obese individuals, and adipose tissue (AT) Cu levels correlate with body mass index. Aging and obesity induce similar AT functional and structural changes, including an accumulation of senescent cells. To study the effect of Cu-mediated stress-induced premature senescent (Cu-SIPS) on preadipocytes, 3T3-L1 cell line was exposed to a subcytotoxic concentration of copper sulfate. After Cu treatment, preadipocytes acquired typical senescence characteristics including diminished cell proliferation, cell and nuclei enlargement and increased lysosomal mass (higher Lamp2 expression and a slight increased number of cells positive for ß-galactosidase associated with senescence (SA-ß-Gal)). Cell cycle arrest was due to upregulation of p16Ink4aInk4a and p21Waf1/Cip1. Accordingly, protein levels of the proliferation marker KI67 were reduced. Cu-SIPS relates with oxidative stress and, in this context, an increase of SOD1 and HO-1 expression was detected in Cu-treated cells. The mRNA expression of senescence-associated secretory phenotype factors, such as Mmp3, Il-6 and Tnf-α, increased in Cu-SIPS 3T3-L1 cells but no effect was observed on the expression of heterochromatin-associated protein 1(HP1). Although the downregulation of Lamin B1 expression is considered a hallmark of senescence, Cu-SIPS cells presented higher levels of Lamin B1. The dysregulation of nuclear lamina was accompanied by an increase of nuclear blebbing, but not of micronuclei number. To conclude, a Cu-SIPS model in 3T3-L1 preadipocytes is here described, which may be an asset to the study of AT dysregulation observed in obesity and aging.


Subject(s)
3T3-L1 Cells , Adipocytes , Cell Proliferation , Cellular Senescence , Copper , Oxidative Stress , Animals , Mice , Cellular Senescence/drug effects , Adipocytes/metabolism , Adipocytes/drug effects , Cell Proliferation/drug effects , Oxidative Stress/drug effects , Copper/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Copper Sulfate/pharmacology
2.
Plant Signal Behav ; 18(1): 2277578, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38051638

ABSTRACT

For a long time, electrical signaling was neglected at the expense of signaling studies in plants being concentrated with chemical and hydraulic signals. Studies conducted in recent years have revealed that plants are capable of emitting, processing, and transmitting bioelectrical signals to regulate a wide variety of physiological functions. Many important biological and physiological phenomena are accompanied by these cellular electrical manifestations, which supports the hypothesis about the importance of bioelectricity as a fundamental 'model' for response the stresses environmental and for activities regeneration of these organisms. Electrical signals have also been characterized and discriminated against in genetically modified plants under stress mediated by sucking insects and/or by the application of systemic insecticides. Such results can guide future studies that aim to elucidate the factors involved in the processes of resistance to stress and plant defense, thus aiding in the development of successful strategies in integrated pest management. Therefore, this mini review includes the results of studies aimed at electrical signaling in response to biotic stress. We also demonstrated how the generation and propagation of electrical signals takes place and included a description of how these electrical potentials are measured.


Subject(s)
Electrophysiological Phenomena , Plant Defense Against Herbivory , Plants , Stress, Physiological , Animals , Herbivory/physiology , Insecta/physiology , Pest Control/methods , Signal Transduction , Stress, Physiological/physiology , Plant Physiological Phenomena , Plant Defense Against Herbivory/physiology , Electrophysiological Phenomena/physiology
3.
J Exp Bot ; 73(11): 3651-3670, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35176760

ABSTRACT

Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.


Subject(s)
Agaricales , Cacao , Solanum lycopersicum , Agaricales/genetics , Cacao/genetics , Cell Wall , Cytokinins , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Sugars , Water
4.
PLoS One ; 16(4): e0249699, 2021.
Article in English | MEDLINE | ID: mdl-33831084

ABSTRACT

Plants have developed various mechanisms to respond specifically to each biotrophic attack. It has been shown that the electrical signals emitted by plants are associated with herbivory stress responses and can lead to the activation of multiple defences. Bt cotton is a genetically modified pest-resistant plant that produces an insecticide from Bacillus thuringiensis (Bt) to control Lepidopteran species. Surprisingly, there is no study-yet, that characterizes the signalling mechanisms in transgenic cotton plants attacked by non-target insects, such as aphids. In this study, we characterized the production of electrical signals on Bt and non-Bt cotton plants infested with Aphis gossypii and, in addition, we characterized the dispersal behaviour of aphids to correlate this behaviour to plant signalling responses. Electrical signalling of the plants was recorded with an extracellular measurement technique. Impressively, our results showed that both Bt and non-Bt cotton varieties, when attacked by A. gossypii, emitted potential variation-type electrical signals and clearly showed the presence of distinct responses regarding their perception and the behaviour of aphids, with evidence of delay, in terms of signal amount, and almost twice the amount of Cry1F protein was observed on Bt cotton plants at the highest density of insects/plant. We present in our article some hypotheses that are based on plant physiology and insect behaviour to explain the responses found on Bt cotton plants under aphid stress.


Subject(s)
Aphids/microbiology , Bacillus thuringiensis/metabolism , Gossypium/microbiology , Gossypium/parasitology , Stress, Physiological/physiology , Animals , Gossypium/genetics , Herbivory/physiology , Insecta/microbiology , Insecticides/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Plants, Genetically Modified/parasitology , Signal Transduction/genetics , Stress, Physiological/genetics
5.
Chemosphere ; 263: 127561, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33296994

ABSTRACT

Plants and insects are parts of a complex system that involves interactions among many trophic levels, and it is important to understand the nature of such interactions. In the complex of interactions involving aphids and transgenic cotton expressing Bacillus thuringiensis, both the spraying of neonicotinoids and the occurrence of predatory coccinellids are common. However, there are gaps regarding the knowledge about possible impacts of neonicotinoids on physiological variables of the host plant and behavioural traits of the aphid (Aphis gossypii) and predator (Cycloneda sanguinea). Therefore, this study aimed to highlight the photosynthetic and electrical responses of the plant to the stress caused by the aphid attack combined with the stress generated by the use of imidacloprid in Bt and non-Bt cotton (Gossypium hirsutum L.) cultivars and to evaluate how this stress can influence the behavioural ecology of the predator and prey. Chlorophyll a fluorescence tests, dark respiration and electrophysiology on non-Bt and Bt cotton were carried out, the behaviour of the prey and predator was also evaluated with a video capture system. Our research is a study model that generates insights about possible impacts when using Imidacloprid without the occurrence of the pest on the plant, because the exposure of non-Bt and Bt cotton plants and the predator to imidacloprid unnecessarily, may result in stress on the physiology of the cotton plants and on the behaviour of the predator.


Subject(s)
Aphids , Animals , Aphids/genetics , Chlorophyll A , Electrophysiology , Fluorescence , Gossypium/genetics , Insecta , Neonicotinoids , Nitro Compounds , Plants, Genetically Modified , Respiration
6.
Work ; 51(3): 445-56, 2015.
Article in English | MEDLINE | ID: mdl-24939121

ABSTRACT

BACKGROUND: Studies concerning indoor thermal conditions are very important in defining the satisfactory comfort range in health care facilities. OBJECTIVE: This study focuses on the evaluation of the thermal comfort sensation felt by surgeons and nurses, in an orthopaedic surgical room of a Portuguese hospital. METHODS: Two cases are assessed, with and without the presence of a person. Computational fluid dynamic (CFD) tools were applied for evaluating the predicted mean vote (PMV) index locally. RESULTS: Using average ventilation values to calculate the PMV index does not provide a correct and enough descriptive evaluation of the surgical room thermal environment. As studied for both cases, surgeons feel the environment slightly hotter than nurses. The nurses feel a slightly cold sensation under the air supply diffuser and their neutral comfort zone is located in the air stagnation zones close to the walls, while the surgeons feel the opposite. It was observed that the presence of a person in the room leads to an increase of the PMV index for surgeons and nurses. That goes in line with the empirical knowledge that more persons in a room lead to an increased heat sensation. CONCLUSIONS: The clothing used by both classes, as well as the ventilation conditions, should be revised accordingly to the amount of persons in the room and the type of activity performed.


Subject(s)
Operating Rooms , Temperature , Thermosensing , Humans , Hydrodynamics , Personnel, Hospital , Thermography , Ventilation
7.
Article in English | MEDLINE | ID: mdl-21491261

ABSTRACT

Asthma is a widespread disease, affecting more than 300 million individuals. The treatment in children is based upon an administration of a pressurised metered-dose inhaler added with a spacer. The efficiency of drug delivery to the patient is strongly affected by the transient airflow pattern inside the spacer device. This paper presents a computational fluid dynamics (CFD) analysis of airflow inside a commercially available spacer device with wide application. This study, carried out in Fluent™, was the basis of an optimisation procedure developed to improve the geometry of the spacer and develop a more efficient product. The results show that an appropriate control of the boundary layer development, by changing the spacer shape, reduces the length of the recirculation zones and improves the flow. It can be concluded that CFD is a powerful technique that can be successfully applied to optimise the geometry of such medical devices.


Subject(s)
Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/chemistry , Computer-Aided Design , Inhalation Spacers , Models, Chemical , Rheology/instrumentation , Rheology/methods , Computer Simulation , Equipment Design , Equipment Failure Analysis
8.
Funct Plant Biol ; 39(6): 471-480, 2012 Jun.
Article in English | MEDLINE | ID: mdl-32480798

ABSTRACT

To understand the effect of summer and winter on the relationships between leaf carbohydrate and photosynthesis in citrus trees growing in subtropical conditions, 'Valencia' orange trees were subjected to external manipulation of their carbohydrate concentration by exposing them to darkness and evaluating the maximal photosynthetic capacity. In addition, the relationships between carbohydrate and photosynthesis in the citrus leaves were studied under natural conditions. Exposing the leaves to dark conditions decreased the carbohydrate concentration and increased photosynthesis in both seasons, which is in accordance with the current model of carbohydrate regulation. Significant negative correlations were found between total non-structural carbohydrates and photosynthesis in both seasons. However, non-reducing sugars were the most important carbohydrate that apparently regulated photosynthesis on a typical summer day, whereas starch was important on a typical winter day. As a novelty, photosynthesis stimulation by carbohydrate consumption was approximately three times higher during the summer, i.e. the growing season. Under subtropical conditions, citrus leaves exhibited relatively high photosynthesis and high carbohydrate levels on the summer day, as well as a high nocturnal consumption of starch and soluble sugars. A positive association was determined between photosynthesis and photoassimilate consumption/exportation, even in leaves showing a high carbohydrate concentration. This paper provides evidence that photosynthesis in citrus leaves is regulated by an increase in sink demand rather than by the absolute carbohydrate concentration in leaves.

9.
An Acad Bras Cienc ; 78(4): 821-35, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17143415

ABSTRACT

The objective of this study was to determine the damage levels caused by Orthezia praelonga Douglas, 1891 and Leucoptera coffeella (Guérin-Mèneville 1842), on rangpur lime and Obatã coffee leaves, respectively. Measurements were based on a new concept for the evaluation of the following plant physiological parameters: photosynthesis, stomatal conductance, leaf temperature and transpiration, and internal concentration of CO2 (by infrared analyzer). A negative correlation between infestation level and photosynthesis was found, where the negative inflexion point of the curve was considered as a reference for damage levels. The control level for O. praelonga is below the 7-13% limit for damaged leaf area (40 to 70 scales per leaf), while for L. coffeella it is below the 26-36% limit for the same variable. Photosynthesis provided the best correlation for this type of analysis.


Subject(s)
Citrus/parasitology , Coffee/parasitology , Lepidoptera , Photosynthesis/physiology , Plant Diseases/parasitology , Plant Transpiration/physiology , Animals , Carbon Dioxide/metabolism , Female , Male , Plant Leaves/parasitology , Temperature , Time Factors
10.
An. acad. bras. ciênc ; 78(4): 821-835, Dec. 2006. ilus, graf
Article in English | LILACS | ID: lil-438579

ABSTRACT

The objective of this study was to determine the damage levels caused by Orthezia praelonga Douglas, 1891 and Leucoptera coffeella (Guérin-Mèneville 1842), on rangpur lime and Obatã coffee leaves, respectively. Measurements were based on a new concept for the evaluation of the following plant physiological parameters: photosynthesis, stomatal conductance, leaf temperature and transpiration, and internal concentration of CO2 (by infrared analyzer). A negative correlation between infestation level and photosynthesis was found, where the negative inflexion point of the curve was considered as a reference for damage levels. The control level for O. praelonga is below the 7-13 percent limit for damaged leaf area (40 to 70 scales per leaf), while for L. coffeella it is below the 26-36 percent limit for the same variable. Photosynthesis provided the best correlation for this type of analysis.


O objetivo deste trabalho foi estabelecer, baseado em um novo conceito de avaliação de parâmetros fisiológicos vegetais, o nível de dano causado por Orthezia praelonga Douglas 1891 e por Leucoptera coffeella (Guérin-Mèneville 1842) em folhas de limão cravo e cafeeiro 'Obatã', respectivamente. Foram feitas leituras de trocas gasosas por infravermelho, além da avaliação da condutância estomática, temperatura foliar, transpiração foliar e concentração interna de CO2. Os dados demonstraram uma correlação negativa entre o nível de infestação e a fotossíntese, sendo o ponto de inflexão negativa da curva tomado como referência de nível de dano, onde o nível de controle para O. praelonga encontra-se abaixo do limite de 7 a 13 por cento de área foliar lesionada (40 a 70 cochonilhas por folha), e o de L. coffeella encontra-se abaixo dos valores de 26 a 36 por cento de área foliar lesionada. Dentre os parâmetros avaliados a fotossíntese foi o que demonstrou melhor correlação para este tipo de análise.


Subject(s)
Animals , Female , Male , Citrus/parasitology , Coffee/parasitology , Lepidoptera , Photosynthesis/physiology , Plant Diseases/parasitology , Plant Transpiration/physiology , Carbon Dioxide/metabolism , Plant Leaves/parasitology , Temperature , Time Factors
11.
An Acad Bras Cienc ; 76(3): 625-30, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15334259

ABSTRACT

Approximate Entropy (ApEn), a model-independent statistics to quantify serial irregularities, was used to evaluate changes in sap flow temporal dynamics of two tropical species of trees subjected to water deficit. Water deficit induced a decrease in sap flow of G. ulmifolia, whereas C. legalis held stable their sap flow levels. Slight increases in time series complexity were observed in both species under drought condition. This study showed that ApEn could be used as a helpful tool to assess slight changes in temporal dynamics of physiological data, and to uncover some patterns of plant physiological responses to environmental stimuli.


Subject(s)
Entropy , Plant Physiological Phenomena , Trees/metabolism , Water/metabolism , Biological Transport , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...