Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Int J Infect Dis ; 104: 373-378, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33434663

ABSTRACT

INTRODUCTION: Coronavirus disease-2019 (COVID-19) is a disease caused by Severe Acute Respiratory Syndrome Virus 2 (SARS-CoV-2) that emerged in China in late 2019. The rapid viral spread has made the disease a public health emergency of worldwide concern. The gold standard for diagnosing SARS-CoV-2 is reverse transcription followed by qualitative real-time polymerase chain reaction (RT-qPCR); however, the role of viral load quantification has not been thoroughly investigated yet. OBJECTIVE: The aim of this study was to develop a high-precision quantitative one-step RT-qPCR reaction using the association of the viral target and the human target in the same reaction. METHODS: The assay standardization involved the absolute quantification method, with serial dilutions of a plasmid with the N gene in a biological matrix to build a standard curve. RESULTS AND DISCUSSION: The results demonstrated the possibility of quantifying as few as 2.5 copies/reaction and an analysis of 244 patients with known results selected by cross-section that revealed 100% agreement with a qualitative RT-qPCR assay registered by Anvisa. In this population, it was possible to quantify patients with between 2.59 and 3.5 × 107 copies per reaction and negative patients continued to indicate the same result. CONCLUSION: This assay can be a useful tool for a proper patient management, because the level and duration of viral replication are important factors to assess the risk of transmission and to guide decisions regarding the isolation and release of patients; an accurate diagnosis is critical information, whereas the current COVID-19 pandemic represents the biggest current global health problem.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Reference Standards , Sensitivity and Specificity , Viral Load , Young Adult
3.
Viruses ; 11(11)2019 10 29.
Article in English | MEDLINE | ID: mdl-31671829

ABSTRACT

The hepatitis delta virus (HDV) is a globally distributed agent, and its genetic variability allows for it to be organized into eight genotypes with different geographic distributions. In South America, genotype 3 (HDV-3) is frequently isolated and responsible for the most severe form of infection. The objective of this study was to evaluate the evolutionary and epidemiological dynamics of HDV-3 over the years and to describe its distribution throughout this continent in an evolutionary perspective. While using Bayesian analysis, with strains being deposited in the Nucleotide database, the most recent common ancestor was dated back to 1964 and phylogenetic analysis indicated that the dispersion may have started in Brazil, spreading to Venezuela and then to Colombia, respectively. Exponential growth in the effective number of infections was observed between the 1950s and 1970s, years after the first report of the presence of HDV on the continent, during the Labrea Black Fever outbreak, which showed that the virus continued to spread, increasing the number of cases decades after the first reports. Subsequently, the analysis showed a decrease in the epidemiological levels of HDV, which was probably due to the implantation of the vaccine against its helper virus, hepatitis B virus, and serological screening methods implemented in the blood banks.


Subject(s)
Hepatitis D/virology , Hepatitis Delta Virus/classification , Hepatitis Delta Virus/genetics , Bayes Theorem , Evolution, Molecular , Genetic Variation , Genotype , Hepatitis D/epidemiology , Hepatitis D/transmission , Hepatitis Delta Virus/isolation & purification , Hepatitis delta Antigens/genetics , Humans , Phylogeny , Phylogeography , RNA, Viral/genetics , South America/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...