Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Biol ; 46(3 Suppl 1): e20230180, 2024.
Article in English | MEDLINE | ID: mdl-38315881

ABSTRACT

Contrary to predictions from classical hybrid sterility models of chromosomal speciation, some organisms display high rates of karyotype variation. Ctenomys are the current mammals with the greatest interspecific and intraspecific chromosomal variation. A large number of species have been studied cytogenetically. The diploid numbers of chromosomes range from 2n = 10 to 2n = 70. Here, we analyzed karyotype evolution in Ctenomys using comparative phylogenetic methods. We found a strong phylogenetic signal with chromosome number. This refutes the chromosomal megaevolution model, which proposes the independent accumulation of multiple chromosomal rearrangements in each closely related species. We found that Brownian motion (BM) described the observed characteristic changes more thoroughly than the Ornstein-Uhlenbeck and Early-Burst models. This suggests that the evolution of chromosome numbers occurs by a random walk along phylogenetic clades. However, our data indicate that the BM model alone does not fully characterize the chromosomal evolution of Ctenomys.

2.
Genet Mol Biol ; 45(2): e20210213, 2022.
Article in English | MEDLINE | ID: mdl-35499272

ABSTRACT

Karyotypes in the worldwide subfamily Oecanthinae show variations in diploid number, chromosome morphology, and sex-chromosome system. This study described the chromosome set and phylogenetic relationships of four Neotropical species, Oecanthus lineolatus, O. valensis, O. pallidus, and O. pictus. We used classical cytogenetics and Bayesian Inference for phylogenetic reconstruction, using the mitochondrial genes COI, 12S rRNA, and 16S rRNA; and analyzed the phylogenetic patterns of changes in chromosome numbers, using ChromEvol. We observed differences in chromosome number among species and two different sex-chromosome systems. Oecanthus pictus showed 2n = 21, X0♂/22, XX♀; O. lineolatus, 2n = 20, XY♂/XX♀; and O. valensis and O. pallidus, 2n = 18, XY♂/XX♀. The karyotype of Oecanthus was asymmetric, one group with large chromosomes and variation in heterochromatin distribution, and another with small acrocentric chromosomes. The phylogenetic tree recovered two main groups: one with the Palearctic species and another with species from different bioregions, but with low posterior probability. The Neotropical species grouped separately, O. valensis and O. pictus with Nearctic and Ethiopian species, and O. pallidus and O. lineolatus in another, well-supported clade. Together, the phylogenic and chromosome data suggest descending dysploidy events during the evolution of the group.

3.
Genet Mol Biol ; 45(2): e20210287, 2022.
Article in English | MEDLINE | ID: mdl-35297941

ABSTRACT

Transposable elements are abundant and dynamic part of the genome, influencing organisms in different ways through their presence or mobilization, or by acting directly on pre- and post-transcriptional regulatory regions. We compared and evaluated the presence, structure, and copy number of three hAT superfamily transposons (hobo, BuT2, and mar) in five strains of Drosophila willistoni species. These D. willistoni strains are of different geographical origins, sampled across the north-south occurrence of this species. We used sequenced clones of the hAT elements in fluorescence in-situ hybridizations in the polytene chromosomes of three strains of D. willistoni. We also analyzed the structural characteristics and number of copies of these hAT elements in the 10 currently available sequenced genomes of the willistoni group. We found that hobo, BuT2, and mar were widely distributed in D. willistoni polytene chromosomes and sequenced genomes of the willistoni group, except for mar, which is restricted to the subgroup willistoni. Furthermore, the elements hobo, BuT2, and mar have different evolutionary histories. The transposon differences among D. willistoni strains, such as variation in the number, structure, and chromosomal distribution of hAT transposons, could reflect the genomic and chromosomal plasticity of D. willistoni species in adapting to highly variable environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...