Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 133: 30-36, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30986471

ABSTRACT

Glossoscolex paulistus hemoglobin structure is composed of 144 globin chains and 36 polypeptide chains lacking the heme group, with a total molecular mass of 3600 kDa. The current study focuses on the oxy-HbGp oligomeric stability, as a function of the storage time, at pH 7.0, using dynamic light scattering, analytical ultracentrifugation (AUC), optical absorption and size exclusion chromatography (SEC). HbGp stored in Tris-HCl buffer, pH 7.0, at 4 °C, for two years remains in the native form, while 4-6 years HbGp stocks present typical hemichrome species absorption spectra. AUC and SEC analyses show that the contribution of HbGp-subunits, such as, dodecamer (abcd)3, tetramer abcd, trimer abc and monomer d, increases with the protein aging due to the lower stability of the HbGp with the time. The dissociation and the oxidation of the iron noted for the older protein solutions indicate that HbGp storage for periods of time longer than two years changes its ability to carry oxygen. Despite the reduction of HbGp stability and oxygen carrying capacity with aging, the protein stability is still larger as compared to mammalian hemoglobins. Thus, the extracellular hemoglobins are quite stable and resistant to the auto-oxidation process, making them of interest for biotechnological applications.


Subject(s)
Hemoglobins/chemistry , Oligochaeta , Protein Multimerization , Animals , Models, Molecular , Optical Phenomena , Protein Stability , Protein Structure, Quaternary , Time Factors
2.
Chemosphere ; 201: 740-748, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29547862

ABSTRACT

This study investigated the anodic oxidation of phenolic wastewater generated by cashew-nut processing industry (CNPI) using active (Ti/RuO2-TiO2) and inactive (boron doped diamond, BDD) anodes. During electrochemical treatment, various operating parameters were investigated, such as current density, chemical oxygen demand (COD), total phenols, O2 production, temperature, pH, as well as current efficiency and energy consumption. After electrolysis under optimized working conditions, samples were evaluated by chromatography and toxicological tests against L. sativa. When both electrode materials were compared under the same operating conditions, higher COD removal efficiency was achieved for BDD anode; achieving lower energy requirements when compared with the values estimated for Ti/RuO2-TiO2. The presence of Cl- in the wastewater promoted the electrogeneration of strong oxidant species as chlorine, hypochlorite and mainly hypochlorous acid, increasing the efficiency of degradation process. Regarding the temperature effect, BDD showed slower performances than those achieved for Ti/RuO2-TiO2. Chromatographic and phytotoxicity studies indicated formation of some by-products after electrolytic process, regardless of the anode evaluated, and phytotoxic action of the effluent. Results encourage the applicability of the electrochemical method as wastewater treatment process for the CNPI, reducing depuration time.


Subject(s)
Diamond/chemistry , Electrolysis/methods , Phenols/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Anacardium/chemistry , Boron/chemistry , Electrodes , Electrolysis/instrumentation , Food Industry , Lactuca/drug effects , Nuts/chemistry , Oxidation-Reduction , Phenols/toxicity , Ruthenium Compounds/chemistry , Titanium/chemistry , Water Pollutants, Chemical/toxicity , Water Purification/instrumentation
3.
Anal Biochem ; 413(2): 148-56, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21356193

ABSTRACT

The electrochemical reduction behavior of dexamethasone at a hanging mercury drop electrode was investigated by cyclic and square-wave adsorptive voltammetries in a Britton-Robinson buffer at pH 2.0. The optimized experimental conditions consisted of a pulse potential frequency of 100 s(-1), a pulse amplitude of 15 mV, and a potential step height of 2 mV, with E(acc)=-0.60V and t(acc)=15s. From these parameters, it was also possible to develop a detailed study about the kinetic and mechanistic events involved in the reduction process. Two well-defined peaks were observed in the cathodic scan, and peak 2 was used to obtain analytical curves. A linear range between 4.98×10(-8) and 6.10×10(-7)mol L(-1), with a detection limit of 2.54×10(-9)mol L(-1) and a quantification limit of 8.47×10(-9)mol L(-1), was observed. Moreover, it was possible to achieve a simple, selective, and versatile methodology adaptable to the quantification of dexamethasone because common excipients used in multicomponent commercial formulations caused no interference. The satisfactory recoveries and the low relative standard deviation data reflected the high accuracy and precision of the proposed method for the determination of dexamethasone in injectable eye drops and elixir samples.


Subject(s)
Dexamethasone/analysis , Glucocorticoids/analysis , Animals , Drug Combinations , Electrochemistry , Electrodes , Humans , Hydrogen-Ion Concentration , Kinetics , Mercury , Models, Chemical , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...