Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124638, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38880076

ABSTRACT

This work aimed to set inline Raman spectroscopy models to monitor biochemically (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, and ammonium) all upstream stages of a virus-like particle-making process. Linear (Partial least squares, PLS; Principal components regression, PCR) and nonlinear (Artificial neural networks, ANN; supported vector machine, SVM) modeling approaches were assessed. The nonlinear models, ANN and SVM, were the more suitable models with the lowest absolute errors. The mean absolute error of the best models within the assessed parameter ranges for viable cell density (0.01-8.83 × 106 cells/mL), cell viability (1.3-100.0 %), glucose (5.22-10.93 g/L), lactate (18.6-152.7 mg/L), glutamine (158-1761 mg/L), glutamate (807.6-2159.7 mg/L), and ammonium (62.8-117.8 mg/L) were 1.55 ± 1.37 × 106 cells/mL (ANN), 5.01 ± 4.93 % (ANN), 0.27 ± 0.22 g/L (SVM), 4.7 ± 2.6 mg/L (SVM), 51 ± 49 mg/L (ANN), 57 ± 39 mg/L (SVM) and 2.0 ± 1.8 mg/L (ANN), respectively. The errors achieved, and best-fitted models were like those for the same bioprocess using offline data and others, which utilized inline spectra for mammalian cell lines as a host.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Least-Squares Analysis , Glucose/analysis , Neural Networks, Computer , Cell Survival/drug effects , Glutamic Acid/analysis , Support Vector Machine , Principal Component Analysis , Glutamine/analysis , Lactic Acid/analysis , Ammonium Compounds/analysis
2.
J Biotechnol ; 363: 19-31, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36587847

ABSTRACT

This work aimed to quantify growth and biochemical parameters (viable cell density, Xv; cell viability, CV; glucose, lactate, glutamine, glutamate, ammonium, and potassium concentrations) in upstream stages to obtain rabies virus-like particles (rabies VLP) from insect cell-baculovirus system using on-line and off-line Raman spectra to calibrate global models with minimal experimental data. Five cultivations in bioreactor were performed. The first one comprised the growth of uninfected Spodoptera frugiperda (Sf9) cells, the second and third runs to obtain recombinant baculovirus (rBV) bearing Rabies G glycoprotein and matrix protein, respectively. The fourth one involved the generation of rabies VLP from rBVs and the last one was a repetition of the third one with cell inoculum infected by rBV. The spectra were acquired through a Raman spectrometer with a 785-nm laser source. The fitted Partial Least Square models for nutrients and metabolites were comparable with those previously reported for mammalian cell lines (Relative error < 15 %). However, the use of this chemometrics approach for Xv and CV was not as accurate as it was for other parameters. The findings from this work established the basis for bioprocess Raman spectroscopical monitoring using insect cells for VLP manufacturing, which are gaining ground in the pharmaceutical industry.


Subject(s)
Rabies virus , Rabies , Animals , Rabies virus/genetics , Spectrum Analysis, Raman , Cell Line , Bioreactors , Baculoviridae , Recombinant Proteins , Insecta , Spodoptera , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...