Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechniques ; 76(3): 104-113, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38112054

ABSTRACT

RT-qPCR dissects transcription-based processes but requires reference genes (RGs) for data normalization. This study prospected RGs for mouse macrophages (pMØ) and spleen infected with Listeria monocytogenes. The pMØ were infected in vitro with L. monocytogenes or vehicle for 4 h. Mice were injected with L. monocytogenes (or vehicle) and euthanized 24 h post-injection. The RGs came from a multispecies primer set, from the literature or designed here. The RG ranking relied on GeNorm, NormFinder, BestKeeper, Delta-CT and RefFinder. B2m-H3f3a-Ppia were the most stable RGs for pMØ, albeit RG indexes fine-tuned estimations of cytokine relative expression. Actß-Ubc-Ppia were the best RGs for spleen but modestly impacted the cytokine relative expression. Hence, mouse models of L. monocytogenes require context-specific RGs for RT-qPCR, thus reinforcing its paramount contribution to accurate gene expression profiling.


Subject(s)
Listeria monocytogenes , Animals , Mice , Listeria monocytogenes/genetics , Real-Time Polymerase Chain Reaction , Gene Expression Profiling , Microarray Analysis , Cytokines/genetics , Reference Standards
2.
Physiol Plant ; 174(6): e13821, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36345266

ABSTRACT

Stylosanthes scabra, popularly known as stylo, is native to the Brazilian Caatinga semiarid region and stands out as a drought-tolerant shrub forage crop. This work provides information about the plant response during the first 48 h of water deficit, followed by a rehydration treatment. Besides root transcriptomics data, 13 physiological or biochemical parameters were scrutinized. Additionally, RNA-Seq annotated transcripts not associated with the "Viridiplantae" clade were taxonomically categorized. It was found that S. scabra quickly perceives and recovers from the oscillations of the imposed water regime. Physiologically, mechanisms that minimize evapotranspiration or protect the photosynthetic apparatus stood out. Biochemically, it was found that the root tissue invests in synthesizing compounds that can act as osmolytes (proline and sugars), emphasizing the importance of osmoregulation to water deficit acclimation. Consistently, transcriptome and qPCR analyses showed that a set of enriched biological processes with upregulated (UR) transcripts were involved in protective functions against reactive oxygen species or encoding enzymes of important metabolic pathways, which might contribute to S. scabra response to water deficit. Additionally, several UR kinases and transcription factors were identified. Finally, in an innovative approach, some naturally occurring microbial groups (such as Schizosaccharomyces, Bradyrhizobium, etc.) were identified in the S. scabra roots. This study reveals insights into the physiological, biochemical, and molecular mechanisms underlying the S. scabra response to water deficit and provides candidate genes that may be useful in developing drought-tolerant crop varieties through biotechnological applications.


Subject(s)
Dehydration , Fabaceae , Fabaceae/genetics , Transcriptome , Gene Expression Profiling , Water , Stress, Physiological/genetics , Droughts , Gene Expression Regulation, Plant
3.
Antibiotics (Basel) ; 10(11)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34827219

ABSTRACT

Lipid transfer proteins (LTPs) are among the most promising plant-exclusive antimicrobial peptides (AMPs). They figure among the most challenging AMPs from the point of view of their structural diversity, functions and biotechnological applications. This review presents a current picture of the LTP research, addressing not only their structural, evolutionary and further predicted functional aspects. Traditionally, LTPs have been identified by their direct isolation by biochemical techniques, whereas omics data and bioinformatics deserve special attention for their potential to bring new insights. In this context, new possible functions have been identified revealing that LTPs are actually multipurpose, with many additional predicted roles. Despite some challenges due to the toxicity and allergenicity of LTPs, a systematic review and search in patent databases, indicate promising perspectives for the biotechnological use of LTPs in human health and also plant defense.

4.
Cryobiology ; 101: 115-124, 2021 08.
Article in English | MEDLINE | ID: mdl-33964298

ABSTRACT

In the present study, we aimed to identify morphological and molecular changes of in vivo and in vitro-produced goat embryos submitted to cryopreservation. In vivo embryos were recovered by transcervical technique from superovulated goats, whereas in vitro produced embryos were produced from ovaries collected at a slaughterhouse. Embryos were frozen by two-steps slow freezing method, which is defined as freezing to -32 °C followed by transfer to liquid nitrogen. Morphological evaluation of embryos was carried out by assessing blastocoel re-expansion rate and the total number of blastomeres. The expression profile of candidate genes related to thermal and oxidative stress, apoptosis, epigenetic, and implantation control was measured using RT-qPCR based SYBR Green system. In silico analyses were performed to identify conserved genes in goat species and protein-protein interaction networks were created. In vivo-produced embryos showed greater blastocoel re-expansion and more blastomere cells (P < 0.05). The expression level of CTP2 and HSP90 genes from in vitro cryopreserved embryos was higher than their in vivo counterparts. Unlikely, no significant difference was observed in the transcription level of SOD gene between groups. The high similarity of CPT2 and HSP90 proteins to their orthologs among mammals indicates that they share conserved functions. In summary, cryopreservation negatively affects the morphology and viability of goat embryos produced in vitro and changes the CPT2 and HSP90 gene expression likely in response to the in vitro production process.


Subject(s)
Cryopreservation , Goats , Animals , Blastocyst , Cryopreservation/methods , Freezing , Gene Expression , Goats/genetics
5.
Biochimie ; 186: 1-12, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33789147

ABSTRACT

Defensins are a prominent family of antimicrobial peptides. They play sophisticated roles in the defense against pathogens in all living organisms, but few works address their expression under different conditions and plant tissues. The present work prospected defensins of Manihot esculenta Crantz, popularly known as cassava. Five defensin candidates (MeDefs) were retrieved from the genome sequences and characterized. Considering chromosome distribution, only MeDef1 and 2 occupy adjacent positions in the same chromosome arm. All 3D structures had antiparallel ß-sheets, an α-helix, and amphipathic residues distributed throughout the peptides with a predominance of cationic surface charge. MeDefs expression was validated by RT-qPCR, including two stress types (biotic: fungus Macrophomina pseudophaseolina, and abiotic: mechanical injury) and a combination of both stresses (fungus+injury) in three different tissues (root, stem, and leaf). For this purpose, ten reference genes (RGs) were tested, and three were chosen to characterize MeDef expression. MeDef3 was up-regulated at roots in all stress situations tested. MeDef1 and MeDef5 were induced in leaves under biotic and abiotic stresses, but not in both stress types simultaneously. Only MeDef2 was down-regulated in the stem tissue also with biotic/abiotic combined stresses. These results indicate that although defensins are known to be responsive to pathogen infection, they may act as preformed defense or, still, have tissue or stress specificities. Aspects of their structure, stability and evolution are also discussed.


Subject(s)
Defensins , Gene Expression Regulation, Plant , Manihot , Plant Proteins , Stress, Physiological , Defensins/biosynthesis , Defensins/chemistry , Defensins/genetics , Gene Expression Profiling , Manihot/chemistry , Manihot/genetics , Manihot/metabolism , Plant Proteins/biosynthesis , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand
6.
Bioinform Biol Insights ; 14: 1177932220952739, 2020.
Article in English | MEDLINE | ID: mdl-32952397

ABSTRACT

Even before the perception or interaction with pathogens, plants rely on constitutively guardian molecules, often specific to tissue or stage, with further expression after contact with the pathogen. These guardians include small molecules as antimicrobial peptides (AMPs), generally cysteine-rich, functioning to prevent pathogen establishment. Some of these AMPs are shared among eukaryotes (eg, defensins and cyclotides), others are plant specific (eg, snakins), while some are specific to certain plant families (such as heveins). When compared with other organisms, plants tend to present a higher amount of AMP isoforms due to gene duplications or polyploidy, an occurrence possibly also associated with the sessile habit of plants, which prevents them from evading biotic and environmental stresses. Therefore, plants arise as a rich resource for new AMPs. As these molecules are difficult to retrieve from databases using simple sequence alignments, a description of their characteristics and in silico (bioinformatics) approaches used to retrieve them is provided, considering resources and databases available. The possibilities and applications based on tools versus database approaches are considerable and have been so far underestimated.

7.
Curr Protein Pept Sci ; 21(1): 36-51, 2020.
Article in English | MEDLINE | ID: mdl-30887921

ABSTRACT

Thaumatin-like proteins (TLPs) are a highly complex protein family associated with host defense and developmental processes in plants, animals, and fungi. They are highly diverse in angiosperms, for which they are classified as the PR-5 (Pathogenesis-Related-5) protein family. In plants, TLPs have a variety of properties associated with their structural diversity. They are mostly associated with responses to biotic stresses, in addition to some predicted activities under drought and osmotic stresses. The present review covers aspects related to the structure, evolution, gene expression, and biotechnological potential of TLPs. The efficiency of the discovery of new TLPs is below its potential, considering the availability of omics data. Furthermore, we present an exemplary bioinformatics annotation procedure that was applied to cowpea (Vigna unguiculata) transcriptome, including libraries of two tissues (root and leaf), and two stress types (biotic/abiotic) generated using different sequencing approaches. Even without using genomic sequences, the pipeline uncovered 56 TLP candidates in both tissues and stresses. Interestingly, abiotic stress (root dehydration) was associated with a high number of modulated TLP isoforms. The nomenclature used so far for TLPs was also evaluated, considering TLP structure and possible functions identified to date. It is clear that plant TLPs are promising candidates for breeding purposes and for plant transformation aiming a better performance under biotic and abiotic stresses. The development of new therapeutic drugs against human fungal pathogens also deserves attention. Despite that, applications derived from TLP molecules are still below their potential, as it is evident in our review.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/genetics , Stress, Physiological/genetics , Vigna/genetics , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Computational Biology/methods , Dehydration , Droughts , Flavoring Agents/chemistry , Flavoring Agents/pharmacology , Osmotic Pressure , Phylogeny , Plant Breeding/methods , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Plant Proteins/classification , Plant Proteins/pharmacology , Plant Roots/genetics , Plant Roots/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Transcriptome , Vigna/metabolism
8.
Gene ; 633: 17-27, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-28855118

ABSTRACT

Drought is the most damaging among the major abiotic stresses. Transcriptomic studies allow a global overview of expressed genes, providing the basis for molecular markers development. Here, the HT-SuperSAGE technique allowed the evaluation of four drought-tolerant cultivars and four-sensitive cultivars, after 24h of irrigation suppression. We identified 9831 induced unitags from roots of the tolerant cultivars with different regulations by the -sensitive cultivars after the applied stress. These unitags allowed a proposal of 15 genes, whose expressed profiles were validated by RT-qPCR, evaluating each cultivar independently. These genes covered broad metabolic processes: ethylene stress attenuation (ACCD); root growth (ß-EXP8); protein degradation [ubiquitination pathway (E2, 20SPß4); plant proteases (AP, C13)]; oxidative detoxification (TRX); fatty acid synthesis (ACC); amino acid transport (AAT), and carbohydrate metabolism [glycolysis (PFK, TPI, FBA); TCA cycle (LDP, MDH); pentose phosphate pathway (TKT)]. The expressed profiles showed a genotype-dependent regulation of the target genes. Two drought-tolerant cultivars (SP83-2847; CTC6) presented each one, nine of the induced genes. Among the -sensitive cultivars, CTC13 induced only one, while SP90-1636 induced two genes. These genes should help breeders to identify accessions managing drought stress tolerance responses, showing better ethylene stress attenuation, energy allocation, amino acid transport, and protein homeostasis.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Saccharum/genetics , Stress, Physiological/genetics , Ethylenes/metabolism , Gene Expression Profiling , Gene Library , Genes, Plant , Genotype , Glycolysis/genetics , Glycolysis/physiology , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , RNA/genetics , Real-Time Polymerase Chain Reaction , Saccharum/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
9.
Curr Protein Pept Sci ; 18(4): 323-334, 2017.
Article in English | MEDLINE | ID: mdl-27455971

ABSTRACT

The discovery of novel plant resistance (R) genes (including their homologs and analogs) opened interesting possibilities for controlling plant diseases caused by several pathogens. However, due to environmental pressure and high selection operated by pathogens, several crop plants have lost specificity, broad-spectrum or durability of resistance. On the other hand, the advances in plant genome sequencing and biotechnological approaches, combined with the increasing knowledge on Rgenes have provided new insights on their applications for plant genetic breeding, allowing the identification and implementation of novel and efficient strategies that enhance or optimize their use for efficiently controlling plant diseases. The present review focuses on main perspectives of application of R-genes and its co-players for the acquisition of resistance to pathogens in cultivated plants, with emphasis on biotechnological inferences, including transgenesis, cisgenesis, directed mutagenesis and gene editing, with examples of success and challenges to be faced.


Subject(s)
Arabidopsis Proteins/immunology , Disease Resistance/genetics , Gene Expression Regulation, Plant/immunology , Plant Diseases/immunology , Plant Proteins/immunology , Plants/genetics , Protein Serine-Threonine Kinases/immunology , Arabidopsis Proteins/genetics , Biotechnology/methods , CRISPR-Cas Systems , Gene Editing/methods , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Mutagenesis, Site-Directed , Plant Breeding/methods , Plant Diseases/genetics , Plant Immunity/genetics , Plant Proteins/genetics , Plants/immunology , Plants/microbiology , Plants/virology , Plants, Genetically Modified , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Serine-Threonine Kinases/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...