Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neuron ; 109(9): 1513-1526.e11, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33770505

ABSTRACT

Recent advances in neuroscience have positioned brain circuits as key units in controlling behavior, implying that their positive or negative modulation necessarily leads to specific behavioral outcomes. However, emerging evidence suggests that the activation or inhibition of specific brain circuits can actually produce multimodal behavioral outcomes. This study shows that activation of a receptor at different subcellular locations in the same neuronal circuit can determine distinct behaviors. Pharmacological activation of type 1 cannabinoid (CB1) receptors in the striatonigral circuit elicits both antinociception and catalepsy in mice. The decrease in nociception depends on the activation of plasma membrane-residing CB1 receptors (pmCB1), leading to the inhibition of cytosolic PKA activity and substance P release. By contrast, mitochondrial-associated CB1 receptors (mtCB1) located at the same terminals mediate cannabinoid-induced catalepsy through the decrease in intra-mitochondrial PKA-dependent cellular respiration and synaptic transmission. Thus, subcellular-specific CB1 receptor signaling within striatonigral circuits determines multimodal control of behavior.


Subject(s)
Brain/metabolism , Receptor, Cannabinoid, CB1/metabolism , Signal Transduction/physiology , Synaptic Transmission/physiology , Animals , Brain/drug effects , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Catalepsy/chemically induced , Cell Membrane/metabolism , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Nociception/drug effects , Nociception/physiology , Signal Transduction/drug effects , Synaptic Transmission/drug effects
2.
Addict Biol ; 26(3): e12940, 2021 05.
Article in English | MEDLINE | ID: mdl-32744799

ABSTRACT

Synthetic cannabinoids have emerged as novel psychoactive substances with damaging consequences for public health. They exhibit high affinity at the cannabinoid type-1 (CB1 ) receptor and produce similar and often more potent effects as other CB1 receptor agonists. However, we are still far from a complete pharmacological understanding of these compounds. In this study, by using behavioral, molecular, pharmacological, and electrophysiological approaches, we aimed at characterizing several in vitro and in vivo pharmacological effects of the synthetic cannabinoid MMB-Fubinaca (also known as AMB-Fubinaca or FUB-AMB), a particular synthetic cannabinoid. MMB-Fubinaca stimulates CB1 receptor-mediated functional coupling to G-proteins in mouse and human brain preparations in a similar manner as the CB1 receptor agonist WIN55,512-2 but with a much greater potency. Both drugs similarly activate the CB1 receptor-dependent extracellular signal-regulated kinase (ERK) pathway. Notably, in vivo administration of MMB-Fubinaca in mice induced greater behavioral and electrophysiological effects in male than in female mice in a CB1 receptor-dependent manner. Overall, these data provide a solid pharmacological profiling of the effects of MMB-Fubinaca and important information about the mechanisms of action underlying its harmful impact in humans. At the same time, they reinforce the significant sexual dimorphism of cannabinoid actions, which will have to be taken into account in future animal and clinical studies.


Subject(s)
Brain/metabolism , Cannabinoids/pharmacology , Indazoles/pharmacology , Valine/analogs & derivatives , Animals , Brain/pathology , Female , HEK293 Cells , Humans , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Sex Factors , Valine/pharmacology
3.
Cell Rep ; 32(7): 108046, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32814049

ABSTRACT

A complex array of inhibitory interneurons tightly controls hippocampal activity, but how such diversity specifically affects memory processes is not well understood. We find that a small subclass of type 1 cannabinoid receptor (CB1R)-expressing hippocampal interneurons determines episodic-like memory consolidation by linking dopamine D1 receptor (D1R) signaling to GABAergic transmission. Mice lacking CB1Rs in D1-positive cells (D1-CB1-KO) display impairment in long-term, but not short-term, novel object recognition memory (NOR). Re-expression of CB1Rs in hippocampal D1R-positive cells rescues this NOR deficit. Learning induces an enhancement of in vivo hippocampal long-term potentiation (LTP), which is absent in mutant mice. CB1R-mediated NOR and the associated LTP facilitation involve local control of GABAergic inhibition in a D1-dependent manner. This study reveals that hippocampal CB1R-/D1R-expressing interneurons control NOR memory, identifying a mechanism linking the diversity of hippocampal interneurons to specific behavioral outcomes.


Subject(s)
Hippocampus/physiology , Memory/physiology , Recognition, Psychology/physiology , Animals , Male , Mice
4.
Neuron ; 99(6): 1247-1259.e7, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30174119

ABSTRACT

By priming brain circuits, associations between low-salience stimuli often guide future behavioral choices through a process known as mediated or inferred learning. However, the precise neurobiological mechanisms of these incidental associations are largely unknown. Using sensory preconditioning procedures, we show that type 1 cannabinoid receptors (CB1R) in hippocampal GABAergic neurons are necessary and sufficient for mediated but not direct learning. Deletion and re-expression of CB1R in hippocampal GABAergic neurons abolishes and rescues mediated learning, respectively. Interestingly, paired presentations of low-salience sensory cues induce a specific protein synthesis-dependent enhancement of hippocampal CB1R expression and facilitate long-term synaptic plasticity at inhibitory synapses. CB1R blockade or chemogenetic manipulations of hippocampal GABAergic neurons upon preconditioning affect incidental associations, as revealed by impaired mediated learning. Thus, CB1R-dependent control of inhibitory hippocampal neurotransmission mediates incidental associations, allowing future associative inference, a fundamental process for everyday life, which is altered in major neuropsychiatric diseases. VIDEO ABSTRACT.


Subject(s)
Hippocampus/metabolism , Long-Term Synaptic Depression/physiology , Receptor, Cannabinoid, CB1/metabolism , Synapses/physiology , Animals , GABAergic Neurons/metabolism , Mice , Neuronal Plasticity/physiology , Synaptic Transmission/physiology
5.
Neuron ; 98(5): 935-944.e5, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29779943

ABSTRACT

Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB1 receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB1 receptors from astroglial cells (GFAP-CB1-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB1 receptors increased intracellular astroglial Ca2+ levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB1-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB1-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs.


Subject(s)
Astrocytes/metabolism , Neurons/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Recognition, Psychology/physiology , Serine/metabolism , Synapses/metabolism , Animals , CA1 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/metabolism , Hippocampus , In Vitro Techniques , Long-Term Potentiation , Memory , Mice , Mice, Knockout , Neuronal Plasticity , Receptor, Cannabinoid, CB1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...