Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photodiagnosis Photodyn Ther ; 27: 54-58, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31146013

ABSTRACT

BACKGROUND: Candida albicans is an opportunistic commensal microorganism, often associated with severe infections in immunosuppressed individuals. C. albicans has hexose transporters that may favor the intracellular accumulation of photosensitizer (PS). the aims of this study were to investigate the influence of glucose load on photodynamic antimicrobial chemotherapy (PACT); and the role that membrane transport system plays on this therapy in the presence of glucose. MATERIAL AND METHODS: Strains of C. albicans were selected: ATCC 10231, YEM 12, YEM 13, YEM 14 and YEM 15. All strains were grown aerobically on Sabouraud agar and incubated at 30 °C for 24 h. The strains were treated with and without glucose, and divided into Control (no treatment), LED light (660 nm, 166 mW/cm2), Photosensitizer (100 µM methylene blue) and PACT at 1, 3 and 6 min of irradiation groups. The colony forming units were counted and data submitted to statistical analysis (ANOVA) and Tukey's test. The concentration of methylene blue (MB) outside the yeast was measured by fluorescence spectroscopy. RESULTS: PACT inactivate C. albicans and the presence of glucose did not affect the killing effect for most strains. Only YEM12 was partially affected by its presence. Regarding efflux systems, ABC overexpressing strain showed a protective effect on the yeast cells. We observed that yeast with overexpression of major facilitator superfamily (MFS) membrane pore tended to accumulate more MB in its cytoplasm, whereas strains that overexpressed ABC pumps (ATP-binding cassette transporters) tended to decrease MB uptake and survive the photodynamic challenge. CONCLUSION: Presence of glucose showed a small effect on PACT . The accumulation of MB on yeast induces more photodynamic inactivation; however, the photodynamic efficacy depends on the type and characteristics of the microbial strain.


Subject(s)
Candida albicans/drug effects , Glucose/pharmacology , Methylene Blue/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , ATP-Binding Cassette Transporters/drug effects , Humans , Microbial Sensitivity Tests , Stem Cells
2.
Photodiagnosis Photodyn Ther ; 19: 1-4, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28414082

ABSTRACT

BACKGROUND: Dental caries are a multifactorial disease that progressively produces tooth destruction as a result of bacterial colonization of enamel surface, especially Streptococcus mutans. The objective of this work was to investigate the role of glucose in antimicrobial photodynamic therapy (aPDT) on S. mutans. METHODS: S. mutans ATCC 25175 were cultured on microaerophilia at 37°C for 48h, and we tested aPDT in the presence of 50mM glucose. Bacterial suspension was used to investigate aPDT with 100µM methylene blue (MB) under LED emitting radiation at ʎ=660nm and parameters as following (P=473 mW; I=166.8 mW/cm2, and doses of 5, 10 and 20J/cm2). A seventy-two hours biofilm was grown on 96 flat buttoned well-plate and irradiation was performed from 10 to 80J/cm2 at similar conditions. RESULTS: There was no dark toxicity nor bacterial death regarding LED irradiation on suspension and on biofilm. Nevertheless, aPDT presented expressive bacterial inactivation following 1 and 2min of irradiation on cell suspension. On the other hand, there was no inactivation in the presence of glucose under the same conditions. Biofilm was completely inactivated by MB-mediated aPDT after 6min of irradiation. However, the presence of glucose delayed the complete inactivation of the biofilm. CONCLUSION: The presence of glucose in the suspension drastically delayed the effect of aPDT on S. mutans and this effect is more pronounced in bacterial suspension than on biofilm.


Subject(s)
Methylene Blue/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Streptococcus mutans/drug effects , Biofilms/drug effects , Glucose/pharmacology , Humans
3.
Trials ; 16: 229, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26013003

ABSTRACT

BACKGROUND: The relationship between diabetes mellitus (DM) and periodontal disease is bidirectional. DM is a predisposing and modifying factor of periodontitis, which, in turn, worsens glycemic control and increases proteins found in the acute phase of inflammation, such as C-reactive protein. The gold standard for the treatment of periodontal disease is oral hygiene orientation, scaling and planing. Moreover, systemic antibiotic therapy may be employed in some cases. In an effort to minimize the prescription of antibiotics, photodynamic therapy (PDT) has been studied as an antimicrobial technique and has demonstrated promising results. The aim of the proposed study is to determine whether PDT as a complement to periodontal therapy (PT) is helpful in the metabolic control of individuals with type 2 diabetes and the reduction of acute-phase inflammatory markers. METHODS/DESIGN: The patients will be randomized using a proper software program into two groups: 1) PT + placebo PDT or 2) PT + active PDT. All patients will first be examined by a specialist, followed by PT performed by two other healthcare professionals. At the end of each session, PDT (active or placebo) will be administered by a fourth healthcare professional. The following will be the PDT parameters: diode laser (660 nm); power output = 110 mW; exposure time = 90 s per point (9 J/point); and energy density = 22 J/cm(2). The photosensitizer will be methylene blue (50 µg/mL). The patients will be re-evaluated 15, 30, 90 and 180 days after treatment. Serological examinations with complete blood count, fasting glucose, glycated hemoglobin and salivary examinations to screen for tumor necrosis factor alpha, interleukin 1, interleukin 6, ostelocalcin, and osteoprotegerin/RANKL will be performed at each evaluation. The data will be statistically evaluated using the most appropriate tests. DISCUSSION: The results of this study will determine the efficacy of photodynamic therapy as an adjuvant to periodontal treatment in diabetic patients. TRIAL REGISTRATION: The protocol for this trial was registered with Clinical Trials registration number NCT01964833 on 14 October 2013.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Inflammation Mediators/blood , Methylene Blue/therapeutic use , Periodontal Diseases/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Saliva/metabolism , Biomarkers/blood , Blood Glucose/metabolism , Brazil , Chronic Disease , Clinical Protocols , Combined Modality Therapy , Dental Scaling , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Double-Blind Method , Glycated Hemoglobin/metabolism , Humans , Methylene Blue/adverse effects , Periodontal Diseases/blood , Periodontal Diseases/diagnosis , Periodontal Diseases/microbiology , Photochemotherapy/adverse effects , Photosensitizing Agents/adverse effects , Research Design , Root Planing , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...