Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Rep ; 41(12)2021 12 22.
Article in English | MEDLINE | ID: mdl-34821365

ABSTRACT

Dopamine signaling has numerous roles during brain development. In addition, alterations in dopamine signaling may be also involved in the pathophysiology of psychiatric disorders. Neurodevelopment is modulated in multiple steps by reactive oxygen species (ROS), byproducts of oxidative metabolism that are signaling factors involved in proliferation, differentiation, and migration. Hexokinase (HK), when associated with the mitochondria (mt-HK), is a potent modulator of the generation of mitochondrial ROS in the brain. In the present study, we investigated whether dopamine could affect both the activity and redox function of mt-HK in human neural progenitor cells (NPCs). We found that dopamine signaling via D1R decreases mt-HK activity and impairs ROS modulation, which is followed by an expressive release of H2O2 and impairment in calcium handling by the mitochondria. Nevertheless, mitochondrial respiration is not affected, suggesting specificity for dopamine on mt-HK function. In neural stem cells (NSCs) derived from induced-pluripotent stem cells (iPSCs) of schizophrenia patients, mt-HK is unable to decrease mitochondrial ROS, in contrast with NSCs derived from healthy individuals. Our data point to mitochondrial hexokinase as a novel target of dopaminergic signaling, as well as a redox modulator in human neural progenitor cells, which may be relevant to the pathophysiology of neurodevelopmental disorders such as schizophrenia.


Subject(s)
Dopamine/pharmacology , Hexokinase/metabolism , Mitochondria/drug effects , Neural Stem Cells/drug effects , Reactive Oxygen Species/metabolism , Receptors, Dopamine D1/agonists , Schizophrenia/enzymology , Calcium/metabolism , Case-Control Studies , Cell Line , Humans , Mitochondria/enzymology , Neural Stem Cells/enzymology , Receptors, Dopamine D1/metabolism , Signal Transduction
2.
Front Cell Dev Biol ; 8: 581136, 2020.
Article in English | MEDLINE | ID: mdl-33043015

ABSTRACT

Retinal development follows a conserved neurogenic program in vertebrates to orchestrate the generation of specific cell types from multipotent progenitors in sequential but overlapping waves. In this program, retinal ganglion cells (RGCs) are the first cell type generated. RGCs are the final output neurons of the retina and are essential for vision and circadian rhythm. Key molecular steps have been defined in multiple vertebrate species to regulate competence, specification, and terminal differentiation of this cell type. This involves neuronal-specific transcription factor networks, regulators of chromatin dynamics and miRNAs. In mammals, RGCs and their optic nerve axons undergo neurodegeneration and loss in glaucoma and other optic neuropathies, resulting in irreversible vision loss. The incapacity of RGCs and axons to regenerate reinforces the need for the design of efficient RGC replacement strategies. Here we describe the essential molecular pathways for the differentiation of RGCs in vertebrates, as well as experimental manipulations that extend the competence window for generation of this early cell type from late progenitors. We discuss recent advances in regeneration of retinal neurons in vivo in both mouse and zebrafish and discuss possible strategies and barriers to achieving RGC regeneration as a therapeutic approach for vision restoration in blinding diseases such as glaucoma.

3.
Development ; 146(16)2019 08 21.
Article in English | MEDLINE | ID: mdl-31405994

ABSTRACT

Retinal ganglion cell (RGC) degeneration is a hallmark of glaucoma, the most prevalent cause of irreversible blindness. Thus, therapeutic strategies are needed to protect and replace these projection neurons. One innovative approach is to promote de novo genesis of RGCs via manipulation of endogenous cell sources. Here, we demonstrate that the pluripotency regulator gene Krüppel-like factor 4 (Klf4) is sufficient to change the potency of lineage-restricted retinal progenitor cells to generate RGCs in vivo Transcriptome analysis disclosed that the overexpression of Klf4 induces crucial regulators of RGC competence and specification, including Atoh7 and Eya2 In contrast, loss-of-function studies in mice and zebrafish demonstrated that Klf4 is not essential for generation or differentiation of RGCs during retinogenesis. Nevertheless, induced RGCs (iRGCs) generated upon Klf4 overexpression migrate to the proper layer and project axons aligned with endogenous fascicles that reach the optic nerve head. Notably, iRGCs survive for up to 30 days after in vivo generation. We identified Klf4 as a promising candidate for reprogramming retinal cells and regenerating RGCs in the retina.This article has an associated 'The people behind the papers' interview.


Subject(s)
Kruppel-Like Transcription Factors/physiology , Neurogenesis , Retinal Ganglion Cells/physiology , Animals , Cell Cycle , Female , Homeodomain Proteins/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Regeneration , Neural Stem Cells/physiology , Rats , Transcription Factor Brn-3A/metabolism , Transcription Factor Brn-3B/metabolism , Zebrafish , Zebrafish Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...