Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 185-186: 227-37, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22325885

ABSTRACT

Corynespora Leaf Fall (CLF) is a major disease of rubber tree (Hevea brasiliensis) caused by the Ascomycota Corynespora cassiicola. Here we describe the cloning and characterization of a gene encoding cassiicolin (Cas), a glycosylated cystein-rich small secreted protein (SSP) identified as a potential CLF disease effector in rubber tree. Three isolates with contrasted levels of aggressiveness were analyzed comparatively. The cassiicolin gene was detected - and the toxin successfully purified - from the isolates with high and medium aggressiveness (CCP and CCAM3 respectively) but not from the isolate with the lowest aggressiveness (CCAM1), suggesting the existence of a different disease effector in the later. CCP and CCAM3 carried strictly identical cassiicolin genes and produced toxins of identical mass, as evidence by mass spectrometry analysis, thus suggesting conserved post-translational modifications in addition to sequence identity. The differences in aggressiveness between CCP and CCAM3 may be attributed to differences in cassiicolin transcript levels rather than qualitative variations in cassiicolin structure. Cassiicolin may play an important role in the early phase of infection since a peak of cassiicolin transcripts occurred in 1 or 2 days after inoculation (before the occurrence of the first symptoms), in both the tolerant and the susceptible cultivars.


Subject(s)
Ascomycota/genetics , Fungal Proteins/isolation & purification , Gene Expression Regulation, Fungal/genetics , Hevea/microbiology , Mycotoxins/isolation & purification , Plant Diseases/microbiology , Amino Acid Sequence , Ascomycota/isolation & purification , Ascomycota/pathogenicity , Base Sequence , Cloning, Molecular , Computational Biology , DNA, Complementary/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , Molecular Sequence Data , Mycelium/genetics , Mycelium/isolation & purification , Mycelium/pathogenicity , Mycotoxins/chemistry , Mycotoxins/genetics , Plant Leaves/microbiology , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, DNA , Virulence
2.
Plant Cell Rep ; 30(10): 1847-56, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21643815

ABSTRACT

Hevea brasiliensis transgenic plants are regenerated from transgenic callus lines by somatic embryogenesis. Somatic embryogenesis is not yet available for commercial propagation of Hevea clones, which requires conventional grafting of buds on rootstock seedlings (budding). The stability of transgene expression in budded plants is therefore necessary for further development of genetic engineering in rubber trees. Transgene expression was assessed by fluorimetric beta-glucuronidase (GUS) activity in fully developed leaves of in vitro plants from transgenic lines and their sub-lines obtained by budding. A large variation in GUS activity was found in self-rooted in vitro plants of five transgenic lines, and the absence of activity in one line suggested transgene silencing. Beyond confirming transmissibility of the reporter gene by budding and long-term expression, a quantification of GUS activity revealed that greater variability existed in budded plants compared to self-rooted mother in vitro plants for three transgenic lines. Although somatic embryogenesis provided more stable GUS activity, budding remained an efficient way of propagating transgenic plants but transgene expression in budded plants should be verified for functional analysis and further development.


Subject(s)
Glucuronidase/metabolism , Hevea/genetics , Plants, Genetically Modified/genetics , Transgenes , Gene Expression Regulation, Plant , Genes, Reporter , Genetic Engineering/methods , Glucuronidase/genetics , Hevea/metabolism , Plant Somatic Embryogenesis Techniques , Plants, Genetically Modified/metabolism , Tissue Culture Techniques
3.
Tree Physiol ; 30(10): 1349-59, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20660491

ABSTRACT

Natural rubber production in Hevea brasiliensis is determined by both tapping and ethephon frequencies. It is affected by a complex physiological disorder called tapping panel dryness. This syndrome is likely to be induced by environmental and latex harvesting stresses. Defence responses, including rubber biosynthesis, are dramatically mediated by wounding, jasmonate and ethylene (ET), among other factors. Using real-time RT-PCR, the effects of wounding, methyl jasmonate (MeJA) and ET on the relative transcript abundance of a set of 25 genes involved in their signalling and metabolic pathways were studied in the bark of 3-month-old epicormic shoots. Temporal regulation was found for 9 out of 25 genes. Wounding treatment regulated the transcript abundance of 10 genes. Wounding-specific regulation was noted for the HbMAPK, HbBTF3b, HbCAS1, HbLTPP and HbPLD genes. MeJA treatment regulated the transcript abundance of nine genes. Of these, the HbMYB, HbCAS2, HbCIPK and HbChi genes were shown to be specifically MeJA inducible. ET response was accompanied by regulation of the transcript abundance of eight genes, and six genes, HbETR2, HbEIN2, HbEIN3, HbCaM, HbPIP1 and HbQM, were specifically regulated by ET treatment. Additionally, the transcript level of the HbGP and HbACR genes was enhanced by all three treatments simultaneously. Overall, a large number of genes were found to be regulated 4 h after the treatments were applied. This study nevertheless revealed some jasmonic acid-independent wound signalling pathways in H. brasiliensis, provided a general characterization of signalling pathways and will serve as a new base from which to launch advanced studies of the network of pathways operating in H. brasiliensis.


Subject(s)
Acetates/pharmacology , Cyclopentanes/pharmacology , Ethylenes/pharmacology , Gene Expression Profiling , Hevea/genetics , Oxylipins/pharmacology , Plant Bark/genetics , Plant Diseases/genetics , DNA Primers , Hevea/drug effects , Plant Bark/drug effects , Plant Proteins/genetics , Plant Shoots/drug effects , Plant Shoots/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic/drug effects , Wounds and Injuries
4.
Plant Cell Rep ; 24(12): 724-33, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16136315

ABSTRACT

An efficient procedure for producing transgenic Hevea brasiliensis callus and plant lines from clone PB 260 was established with Agrobacterium tumefaciens using strain EHA105 harbouring the vector pCAMBIA2301. Transformation capacity and competence of the embryogenic calli were improved after two cycles of cryopreservation. When the cocultivation temperature was reduced from 27 to 20 degrees C, the duration of this phase could be increased up to 7 days, promoting an increase in GUS activity. These transformation conditions led to the isolation of 24 callus lines resistant to paromomycin, which is used as a selection agent. Nineteen of these lines revealed the existence of one to four copies of T-DNA by Southern-blot analysis. Nine of them were transferred for regeneration by somatic embryogenesis. Three hundred seventy-four transgenic plants have thus been generated from six independent lines bearing 1, 2 or 3 copies of T-DNA. The efficiency and reproducibility of this method means that functional characterization of genes involved in natural rubber production can be envisaged.


Subject(s)
Agrobacterium tumefaciens/physiology , Hevea/embryology , Seeds/growth & development , Transformation, Bacterial , Base Sequence , Blotting, Southern , DNA Primers , Glucuronidase/metabolism , Hevea/growth & development , Hevea/microbiology , Hevea/physiology , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...