Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
ACS Photonics ; 10(8): 2632-2640, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37602288

ABSTRACT

The internal quantum efficiency of (In,Ga)N/GaN quantum wells can surpass 90% for blue-emitting structures at moderate drive current densities but decreases significantly for longer emission wavelengths and at higher excitation rates. This latter effect is known as efficiency "droop" and limits the brightness of light-emitting diodes (LEDs) based on such quantum wells. Several mechanisms have been proposed to explain efficiency droop including Auger recombination, both intrinsic and defect-assisted, carrier escape, and the saturation of localized states. However, it remains unclear which of these mechanisms is most important because it has proven difficult to reconcile theoretical calculations of droop with measurements. Here, we first present experimental photoluminescence measurements extending over three orders of magnitude of excitation for three samples grown at different temperatures that indicate that droop behavior is not dependent on the point defect density in the quantum wells studied. Second, we use an atomistic tight-binding electronic structure model to calculate localization-enhanced radiative and Auger rates and show that both the corresponding carrier density-dependent internal quantum efficiency and the carrier density decay dynamics are in excellent agreement with our experimental measurements. Moreover, we show that point defect density, Auger recombination, and the effect of the polarization field on recombination rates only limit the peak internal quantum efficiency to about 70% in the resonantly excited green-emitting quantum wells studied. This suggests that factors external to the quantum wells, such as carrier injection efficiency and homogeneity, contribute appreciably to the significantly lower peak external quantum efficiency of green LEDs.

2.
Micron ; 172: 103489, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37385074

ABSTRACT

In this work, a technique for quantifying carbon doping concentrations in GaN:C/AlGaN buffer structures using cathodoluminescence (CL) is presented. The method stems from the knowledge that the blue and yellow luminescence intensity in CL spectra of GaN varies with the carbon doping concentration. By calculating the blue and yellow luminescence peak intensities normalised to the peak GaN near-band-edge intensity for GaN layers of known carbon concentrations, calibration curves that show the change in normalised blue and yellow luminescence intensity with carbon concentration in the 1016 - 1019 cm-3 range were derived at both room temperature and 10 K. The utility of such calibration curves was then examined by testing against an unknown sample containing multiple carbon-doped GaN layers. The results obtained from CL using the normalised blue luminescence calibration curves are in close agreement with those from secondary-ion mass spectroscopy (SIMS). However,the method fails when applying calibration curves obtained from the normalised yellow luminescence likely due to the influence of native VGa defects acting in this luminescence region. Although this work shows that indeed CL can be used as a quantitative tool to measure carbon doping concentrations in GaN:C, it is noted that the intrinsic broadening effects innate to CL can make it difficult to differentiate between the intensity variations in thin ( < 500 nm) multilayered GaN:C structures such as the ones studied in this work.

3.
ACS Appl Energy Mater ; 6(7): 3933-3943, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37064411

ABSTRACT

2H-Benzotriazol-2-ylethylammonium bromide and iodide and its difluorinated derivatives are synthesized and employed as interlayers for passivation of formamidinium lead triiodide (FAPbI3) solar cells. In combination with PbI2 and PbBr2, these benzotriazole derivatives form two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) as evidenced by their crystal structures and thin film characteristics. When used to passivate n-i-p FAPbI3 solar cells, the power conversion efficiency improves from 20% to close to 22% by enhancing the open-circuit voltage. Quasi-Fermi level splitting experiments and scanning electron microscopy cathodoluminescence hyperspectral imaging reveal that passivation provides a reduced nonradiative recombination at the interface between the perovskite and hole transport layer. Photoluminescence spectroscopy, angle-resolved grazing-incidence wide-angle X-ray scattering, and depth profiling X-ray photoelectron spectroscopy studies of the 2D/three-dimensional (3D) interface between the benzotriazole RPP and FAPbI3 show that a nonuniform layer of 2D perovskites is enough to passivate defects, enhance charge extraction, and decrease nonradiative recombination.

4.
Nat Chem ; 14(11): 1203-1206, 2022 11.
Article in English | MEDLINE | ID: mdl-36302867

Subject(s)
Chemistry , Female , Humans
5.
PLoS Comput Biol ; 18(6): e1010171, 2022 06.
Article in English | MEDLINE | ID: mdl-35737648

ABSTRACT

Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale because it relies on manual tracing of contacts. Exposure notification apps have been developed to digitally scale up TTI by harnessing contact data obtained from mobile devices; however, exposure notification apps provide users only with limited binary information when they have been directly exposed to a known infection source. Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network. Network DA exploits diverse sources of health data together with the proximity data from mobile devices that exposure notification apps rely upon. It provides users with continuously assessed individual risks of exposure and infection, which can form the basis for targeting individual contact interventions. Simulations of the early COVID-19 epidemic in New York City are used to establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more infections than contact tracing when both harness the same contact data and diagnostic test data. This remains true even when only a relatively small fraction of the population uses network DA. When a sufficiently large fraction of the population (≳ 75%) uses network DA and complies with individual contact interventions, targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by expanding the computational backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control future epidemics while minimizing economic disruption.


Subject(s)
COVID-19 , Epidemics , Mobile Applications , COVID-19/epidemiology , COVID-19/prevention & control , Contact Tracing , Epidemics/prevention & control , Humans , New York City
6.
Faraday Discuss ; 236(0): 311-337, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35531642

ABSTRACT

The extension of X-ray photoelectron spectroscopy (XPS) to measure layers and interfaces below the uppermost surface requires higher X-ray energies and electron energy analysers capable of measuring higher electron kinetic energies. This has been enabled at synchrotron radiation facilities and by using lab-based instruments which are now available with sufficient sensitivity for measurements to be performed on reasonable timescales. Here, we detail measurements on buried interfaces using a Ga Kα (9.25 keV) metal jet X-ray source and an EW4000 energy analyser (ScientaOmicron GmbH) in the Henry Royce Institute at the University of Manchester. Development of the technique has required the calculation of relative sensitivity factors (RSFs) to enable quantification analogous to Al Kα XPS, and here we provide further substantiation of the Ga Kα RSF library. Examples of buried interfaces include layers of memory and energy materials below top electrode layers, semiconductor heterostructures, ions implanted in graphite, oxide layers at metallic surfaces, and core-shell nanoparticles. The use of an angle-resolved mode enables depth profiling from the surface into the bulk, and is complemented with surface-sensitive XPS. Inelastic background modelling allows the extraction of information about buried layers at depths up to 20 times the photoelectron inelastic mean free path.

7.
Ultramicroscopy ; 231: 113258, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33812707

ABSTRACT

We have performed cross-sectional scanning capacitance microscopy (SCM), cathodoluminescence (CL) microscopy in the scanning electron microscope (SEM) and transmission electron microscopy (TEM) all on the same few-micron region of a GaN/sapphire sample. To achieve this, it was necessary to develop a process flow which allowed the same features viewed in a cleaved cross-section to be traced from one microscope to the next and to adapt the focused ion beam preparation of the TEM lamella to allow preparation of a site-specific sample on a pre-cleaved cross-section. Growth of our GaN/sapphire samples involved coalescence of three-dimensional islands to form a continuous film. Highly doped marker layers were included in the sample so that coalescence boundaries formed late in the film growth process could be identified in SCM and CL. Using TEM, we then identified one or more dislocations associated with each of several such late-coalescing boundaries. In contrast, previous studies have addressed coalescence boundaries formed earlier in the growth process and have shown that early-stage island coalescence does not lead to dislocation formation.

8.
Ultramicroscopy ; 231: 113255, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33762123

ABSTRACT

Directly correlated measurements of the surface morphology, light emission and subsurface structure and composition were carried out on the exact same nanoscale trench defects in InGaN quantum well (QW) structures. Multiple scanning probe, scanning electron and transmission electron microscopy techniques were used to explain the origin of their unusual emission behaviour and the relationship between surface morphology and cathodoluminescence (CL) redshift. Trench defects comprise of an open trench partially or fully enclosing material in InGaN QWs with different CL emission properties to their surroundings. The CL redshift was shown to typically vary with the width of the trench and the prominence of the material enclosed by the trench above its surroundings. Three defects, encompassing typical and atypical features, were prepared into lamellae for transmission electron microscopy (TEM). A cross marker technique was used in the focused ion beam-scanning electron microscope (FIB-SEM) to centre the previously characterised defects in each lamella for further analysis. The defects with wider trenches and strong redshifts in CL emission had their initiating basal-plane stacking fault (BSF) towards the bottom of the QW stack, while the BSF formed near the top of the QW stack for a defect with a narrow trench and minimal redshift. The raised-centre, prominent defect showed a slight increase in QW thickness moving up the QW stack while QW widths in the level-centred defect remained broadly constant. The indium content of the enclosed QWs increased above the BSF positions up to a maximum, with an increase of approximately 4% relative to the surroundings seen for one defect examined. Gross fluctuations in QW width (GWWFs) were present in the surrounding material in this sample but were not seen in QWs enclosed by the defect volumes. These GWWFs have been linked with indium loss from surface step edges two or more monolayers high, and many surface step edges appear pinned by the open trenches, suggesting another reason for the higher indium content seen in QWs enclosed by trench defects.

9.
Sci Rep ; 10(1): 5667, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32205854

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Ultramicroscopy ; 212: 112970, 2020 May.
Article in English | MEDLINE | ID: mdl-32114315

ABSTRACT

We describe the use of a cross-shaped platinum marker deposited using electron-beam-induced deposition (EBID) in a focused ion beam - scanning electron microscope (FIB-SEM) system to facilitate site-specific preparation of a TEM foil containing a trench defect in an InGaN/GaN multiple quantum well structure. The defect feature is less than 100 nm wide at the surface. The marker is deposited prior to the deposition of a protective platinum strap (also by EBID) with the centre of the cross indicating the location of the feature of interest, while the arms of the square cross make an acute angle of 45° with the strap's long axis. During the ion-beam thinning process, the marker may be viewed in cross-section from both sides of the sample alternately, and the coming together of the features relating to the arms of the cross indicates increasing proximity to the feature of interest. Although this approach does allow increased precision in locating the region of interest during thinning, it also increases the time required to complete the sample preparation. Hence, this method is particularly well suited to directly correlated multi-microscopy investigations in previously characterised material where high yield and the precise location are more important than preparation time. In addition to TEM lamella preparation, this method could equally be useful for preparing site-specific atom probe tomography (APT) samples.

11.
Sci Rep ; 9(1): 18862, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31827118

ABSTRACT

We report on a combined theoretical and experimental study of the impact of alloy fluctuations and Coulomb effects on the electronic and optical properties of [Formula: see text]-plane GaN/AlGaN multi-quantum well systems. The presence of carrier localization effects in this system was demonstrated by experimental observations, such as the "S-shape" temperature dependence of the photoluminescence (PL) peak energy, and non-exponential PL decay curves that varied across the PL spectra at 10 K. A three-dimensional modified continuum model, coupled with a self-consistent Hartree scheme, was employed to gain insight into the electronic and optical properties of the experimentally studied [Formula: see text]-plane GaN/AlGaN quantum wells. This model confirmed the existence of strong hole localization arising from the combined effects of the built-in polarization field along the growth direction and the alloy fluctuations at the quantum well/barrier interface. However, for electrons these localization effects are less pronounced in comparison to the holes. Furthermore, our calculations show that the attractive Coulomb interaction between electron and hole results in exciton localization. This behavior is in contrast to the picture of independently localized electrons and holes, often used to explain the radiative recombination process in [Formula: see text]-plane InGaN/GaN quantum well systems.

12.
New Phytol ; 223(4): 1888-1903, 2019 09.
Article in English | MEDLINE | ID: mdl-31081152

ABSTRACT

Occurrence of stomata on both leaf surfaces (amphistomaty) promotes higher stomatal conductance and photosynthesis while simultaneously increasing exposure to potential disease agents in black cottonwood (Populus trichocarpa). A genome-wide association study (GWAS) with 2.2M single nucleotide polymorphisms generated through whole-genome sequencing found 280 loci associated with variation in adaxial stomatal traits, implicating genes regulating stomatal development and behavior. Strikingly, numerous loci regulating plant growth and response to biotic and abiotic stresses were also identified. The most significant locus was a poplar homologue of SPEECHLESS (PtSPCH1). Individuals possessing PtSPCH1 alleles associated with greater adaxial stomatal density originated primarily from environments with shorter growing seasons (e.g. northern latitudes, high elevations) or with less precipitation. PtSPCH1 was expressed in developing leaves but not developing stem xylem. In developing leaves, RNA sequencing showed patterns of coordinated expression between PtSPCH1 and other GWAS-identified genes. The breadth of our GWAS results suggests that the evolution of amphistomaty is part of a larger, complex response in plants. Suites of genes underpin this response, retrieved through genetic association to adaxial stomata, and show coordinated expression during development. We propose that the occurrence of amphistomaty in P. trichocarpa involves PtSPCH1 and reflects selection for supporting rapid growth over investment in immunity.


Subject(s)
Body Patterning , Plant Proteins/metabolism , Plant Stomata/physiology , Populus/physiology , Alleles , Climate , Gene Expression Regulation, Plant , Genes, Plant , Genome-Wide Association Study , Genotype , Geography , Phenotype , Plant Development , Plant Immunity/genetics , Plant Proteins/genetics , Plant Stomata/genetics , Polymorphism, Single Nucleotide/genetics , Populus/genetics , Populus/growth & development , Populus/immunology , Quantitative Trait, Heritable , Species Specificity
13.
Sci Immunol ; 3(27)2018 09 07.
Article in English | MEDLINE | ID: mdl-30194239

ABSTRACT

Airway hyperresponsiveness (AHR) is a critical feature of wheezing and asthma in children, but the initiating immune mechanisms remain unconfirmed. We demonstrate that both recombinant interleukin-33 (rIL-33) and allergen [house dust mite (HDM) or Alternaria alternata] exposure from day 3 of life resulted in significantly increased pulmonary IL-13+CD4+ T cells, which were indispensable for the development of AHR. In contrast, adult mice had a predominance of pulmonary LinnegCD45+CD90+IL-13+ type 2 innate lymphoid cells (ILC2s) after administration of rIL-33. HDM exposure of neonatal IL-33 knockout (KO) mice still resulted in AHR. However, neonatal CD4creIL-13 KO mice (lacking IL-13+CD4+ T cells) exposed to allergen from day 3 of life were protected from AHR despite persistent pulmonary eosinophilia, elevated IL-33 levels, and IL-13+ ILCs. Moreover, neonatal mice were protected from AHR when inhaled Acinetobacter lwoffii (an environmental bacterial isolate found in cattle farms, which is known to protect from childhood asthma) was administered concurrent with HDM. A. lwoffii blocked the expansion of pulmonary IL-13+CD4+ T cells, whereas IL-13+ ILCs and IL-33 remained elevated. Administration of A. lwoffii mirrored the findings from the CD4creIL-13 KO mice, providing a translational approach for disease protection in early life. These data demonstrate that IL-13+CD4+ T cells, rather than IL-13+ ILCs or IL-33, are critical for inception of allergic AHR in early life.


Subject(s)
Allergens/immunology , CD4-Positive T-Lymphocytes/immunology , Interleukin-13/immunology , Respiratory Hypersensitivity/immunology , Acinetobacter/immunology , Alternaria/immunology , Animals , Animals, Newborn , Female , Interleukin-33/genetics , Male , Mice, Inbred BALB C , Mice, Knockout , Mice, SCID , Pyroglyphidae/immunology
14.
J Phys Condens Matter ; 30(17): 175303, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29557786

ABSTRACT

In this paper we report on changes in the form of the low temperature (12 K) photoluminescence spectra of an InGaN/GaN quantum well structure as a function of excitation photon energy. As the photon energy is progressively reduced we observe at a critical energy a change in the form of the spectra from one which is determined by the occupation of the complete distribution of hole localisation centres to one which is determined by the resonant excitation of specific localisation sites. This change is governed by an effective mobility edge whereby the photo-excited holes remain localised at their initial energy and are prevented from scattering to other localisation sites. This assignment is confirmed by the results of atomistic tight binding calculations which show that the wave function overlap of the lowest lying localised holes with other hole states is low compared with the overlap of higher lying hole states with other higher lying hole states.

15.
Mucosal Immunol ; 11(2): 523-535, 2018 03.
Article in English | MEDLINE | ID: mdl-29067998

ABSTRACT

Mucosal surfaces are under constant bombardment from potentially antigenic particles and so must maintain a balance between homeostasis and inappropriate immune activation and consequent pathology. Epithelial cells have a vital role orchestrating pulmonary homeostasis and defense against pathogens. TGF-ß regulates an array of immune responses-both inflammatory and regulatory-however, its function is highly location- and context-dependent. We demonstrate that epithelial-derived TGF-ß acts as a pro-viral factor suppressing early immune responses during influenza A infection. Mice specifically lacking bronchial epithelial TGF-ß1 (epTGFßKO) displayed marked protection from influenza-induced weight loss, airway inflammation, and pathology. However, protection from influenza-induced pathology was not associated with a heightened lymphocytic immune response. In contrast, the kinetics of interferon beta (IFNß) release into the airways was significantly enhanced in epTGFßKO mice compared with control mice, with elevated IFNß on day 1 in epTGFßKO compared with control mice. This induced a heighted antiviral state resulting in impaired viral replication in epTGFßKO mice. Thus, epithelial-derived TGF-ß acts to suppress early IFNß responses leading to increased viral burden and pathology. This study demonstrates the importance of the local epithelial microenvironmental niche in shaping initial immune responses to viral infection and controlling host disease.


Subject(s)
Influenza A virus/physiology , Influenza, Human/immunology , Lung/physiology , Orthomyxoviridae Infections/immunology , Respiratory Mucosa/physiology , Transforming Growth Factor beta1/metabolism , Animals , Cells, Cultured , Humans , Immunity, Mucosal , Interferon-beta/metabolism , Lung/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Respiratory Mucosa/virology , Transforming Growth Factor beta1/genetics , Virus Replication
16.
Opt Express ; 25(16): 19179-19184, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041111

ABSTRACT

Red-, orange-, and green-emitting integrated optoelectronic sources are demonstrated by transfer printing blue InGaN µLEDs onto ultra-thin glass platforms functionally enhanced with II-VI colloidal quantum dots (CQDs). The forward optical power conversion efficiency of these heterogeneously integrated devices is, respectively, 9%, 15%, and 14% for a blue light absorption over 95%. The sources are demonstrated in an orthogonal frequency division multiplexed (OFDM) visible light communication link reaching respective data transmission rates of 46 Mbps, 44 Mbps and 61 Mbps.

17.
Rhinology ; 55(3): 234-241, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28667737

ABSTRACT

BACKGROUND: Although extracellular matrix (ECM) proteins are associated with irreversible lower airway changes, the relationship with upper airway remodelling which occurs during chronic rhinosinusitis (CRS) is poorly understood. This study assessed the expression of ECM proteins periostin, fibulin-1, fibronectin and collagenIV in nasal mucosa of patients with and without histologic features of remodelling. METHODS: A cross-sectional study of sinonasal mucosal biopsies taken from patients, undergoing surgery for CRS was performed, where patients were grouped according to remodelling, defined by basement membrane thickening (BMT over 7.5 micrometer) and subepithelial fibrosis. An overall view and three random fields of immunostained tissue sections that included epithelium, basement membrane and submucosa, were imaged using Zeiss Zen software. The area and intensity of positive staining were scored by two blinded observers, using a 12-point ordinal scale of weak to strong. RESULTS: 65 patients (47.6 +/- 13.4years, 44.6% female) were assessed. Patients were grouped as controls 26.2%, BMT/no fibrosis 38.5% or BMT and fibrosis 33.8%. Stronger grade of periostin expression was associated with remodelling changes and tissue eosinophilia over 10/HPF. Fibulin-1, fibronectin and collagenIV did not differ. CONCLUSION: Periostin expression was associated with the presence of BMT, fibrosis and tissue eosinophilia and may identify patients undergoing remodelling changes.


Subject(s)
Biomarkers/metabolism , Cell Adhesion Molecules/metabolism , Eosinophils/metabolism , Fibronectins/metabolism , Nasal Mucosa/metabolism , Sinusitis/complications , Airway Remodeling , Cell Adhesion Molecules/chemistry , Chronic Disease , Cross-Sectional Studies , Fibronectins/chemistry , Humans
18.
Nanoscale ; 9(27): 9421-9427, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28660258

ABSTRACT

Solid-state single photon sources with polarisation control operating beyond the Peltier cooling barrier of 200 K are desirable for a variety of applications in quantum technology. Using a non-polar InGaN system, we report the successful realisation of single photon emission with a g(2)(0) of 0.21, a high polarisation degree of 0.80, a fixed polarisation axis determined by the underlying crystallography, and a GHz repetition rate with a radiative lifetime of 357 ps at 220 K in semiconductor quantum dots. The temperature insensitivity of these properties, together with the simple planar epitaxial growth method and absence of complex device geometries, demonstrates that fast single photon emission with polarisation control can be achieved in solid-state quantum dots above the Peltier temperature threshold, making this system a potential candidate for future on-chip applications in integrated systems.

19.
Ultramicroscopy ; 176: 93-98, 2017 05.
Article in English | MEDLINE | ID: mdl-28196629

ABSTRACT

We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs.

20.
Exp Mech ; 57(9): 1469-1482, 2017.
Article in English | MEDLINE | ID: mdl-30930472

ABSTRACT

The digital image correlation (DIC) of speckle patterns obtained by vapour-assisted gold remodelling at 200 - 350 °C has already been used to map plastic strains with submicron resolution. However, it has not so far proved possible to use such patterns for testing at high temperatures. Here we demonstrate how a gold speckle pattern can be made that is stable at 700 °C, to study deformation in a commercial TiAl alloy (Ti-45Al-2Nb-2Mn(at%)-0.8 vol% TiB2). The pattern is made up of a uniformly sized random array of Au islands as small as 15 nm in diameter, depending on reconstruction parameters, with a sufficiently small spacing to be suitable for nano-scale, nDIC, strain mapping at a subset size of 60 × 60 nm2. It can be used at temperatures up to 700 °C for many hours, for high cycle fatigue testing for instance. There is good particle attachment to the substrate. It can withstand ultra-sound cleaning, is thermally stable and has a high atomic number contrast for topography-free backscatter electron imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...