Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 5(4): 1393-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23357505

ABSTRACT

We demonstrate the functionalization of n-type (100) and (111) 3C-SiC surfaces with organosilanes. Self-assembled monolayers (SAMs) of amino-propyldiethoxymethylsilane (APDEMS) and octadecyltrimethoxysilane (ODTMS) are formed via wet chemical processing techniques. Their structural, chemical, and electrical properties are investigated using static water contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy, revealing that the organic layers are smooth and densely packed. Furthermore, combined contact potential difference and surface photovoltage measurements demonstrate that the heterostructure functionality and surface potential can be tuned by utilizing different organosilane precursor molecules. Molecular dipoles are observed to significantly affect the work functions of the modified surfaces. Furthermore, the magnitude of the surface band bending is reduced following reaction of the hydroxylated surfaces with organosilanes, indicating that partial passivation of electrically active surface states is achieved. Micropatterning of organic layers is demonstrated by lithographically defined oxidation of organosilane-derived monolayers in an oxygen plasma, followed by visualization of resulting changes of the local wettability, as well as fluorescence microscopy following immobilization of fluorescently labeled BSA protein.

2.
Biomed Microdevices ; 15(2): 353-68, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23319268

ABSTRACT

Silicon carbide (SiC) has been around for more than 100 years as an industrial material and has found wide and varied applications because of its unique electrical and thermal properties. In recent years there has been increased attention to SiC as a viable material for biomedical applications. Of particular interest in this review is its potential for application as a biotransducer in biosensors. Among these applications are those where SiC is used as a substrate material, taking advantage of its surface chemical, tribological and electrical properties. In addition, its potential for integration as system on a chip and those applications where SiC is used as an active material make it a suitable substrate for micro-device fabrication. This review highlights the critical properties of SiC for application as a biosensor and reviews recent work reported on using SiC as an active or passive material in biotransducers and biosensors.


Subject(s)
Biocompatible Materials/chemistry , Biosensing Techniques/instrumentation , Carbon Compounds, Inorganic/chemistry , Conductometry/instrumentation , Micro-Electrical-Mechanical Systems/instrumentation , Optical Devices , Silicon Compounds/chemistry , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...