Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Photochem Photobiol B ; 164: 226-235, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27693843

ABSTRACT

Pterin derivatives are involved in various biological functions, including enzymatic processes that take place in human skin. Unconjugated oxidized pterins are efficient photosensitizers under UV-A irradiation and accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder. These compounds are able to photoinduce the oxidation of the peptide α-melanocyte-stimulating hormone (α-MSH), which stimulates the production and release of melanin by melanocytes in skin and hair. In the present work we have used two peptides in which the amino acid sequence of α-MSH was mutated to specifically investigate the reactivity of tryptophan (Trp) and tyrosine residues (Tyr). The parent compound of oxidized pterins (Ptr) was used as a model photosensitizer in aqueous solution at pH5.5 and was exposed to UV-A radiation, a wavelength range where the peptides do not absorb. Trp residue yields N-formylkynurenine and hydroxytryptophan as oxidized products, whereas the Tyr undergoes dimerization and incorporation of oxygen atoms. In both cases, the first step of the mechanism involves an electron transfer from the amino acid to the photosensitizer triplet excited state, Ptr is not consumed and hydrogen peroxide (H2O2) is released. The role of singlet oxygen produced by energy transfer from 3Ptr⁎ to dissolved O2 was negligible or minor. Other amino acid residues, such as histidine, might be also affected.


Subject(s)
Photosensitizing Agents/metabolism , Tryptophan/metabolism , Tyrosine/metabolism , Mass Spectrometry , Oxidation-Reduction , Spectrometry, Fluorescence
2.
Free Radic Biol Med ; 96: 418-31, 2016 07.
Article in English | MEDLINE | ID: mdl-27154982

ABSTRACT

UV-A radiation (320-400nm), recognized as a class I carcinogen, induces damage to the DNA molecule and its components through different mechanisms. Pterin derivatives are involved in various biological functions, including enzymatic processes, and it has been demonstrated that oxidized pterins may act as photosensitizers. In particular, they accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder. We have investigated the ability of pterin (Ptr), the parent compound of oxidized pterins, to photosensitize the degradation of the pyrimidine nucleotide thymidine 5'-monophosphate (dTMP) in aqueous solutions under UV-A irradiation. Although thymine is less reactive than purine nucleobases, our results showed that Ptr is able to photoinduce the degradation of dTMP and that the process is initiated by an electron transfer from the nucleotide to the triplet excited state of Ptr. In the presence of molecular oxygen, the photochemical process leads to the oxidation of dTMP, whereas Ptr is not consumed. In the absence of oxygen, both compounds are consumed to yield a product in which the pterin moiety is covalently linked to the thymine. This compound retains some of the spectroscopic properties of Ptr, such as absorbance in the UV-A region and fluorescence properties.


Subject(s)
Oxidation-Reduction/drug effects , Photosensitizing Agents/pharmacology , Pterins/pharmacology , Thymidine Monophosphate/chemistry , Electron Transport/drug effects , Humans , Oxygen/chemistry , Purine Nucleotides/chemistry , Thymidine Monophosphate/radiation effects , Ultraviolet Rays
3.
J Photochem Photobiol B ; 153: 483-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26585669

ABSTRACT

Aromatic pterins accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder, due to the oxidation of tetrahydrobiopterin, the biologically active form of pterins. In this work, we have investigated the ability of pterin, the parent compound of aromatic pterins, to photosensitize the oxidation of histidine in aqueous solutions under UV-A irradiation. Histidine is an α-amino acid with an imidazole functional group, and is frequently present at the active sites of enzymes. The results highlight the role of the pH in controlling the competition between energy and electron transfer mechanisms. It has been previously demonstrated that pterins participate as sensitizers in photosensitized oxidations, both by type I (electron-transfer) and type II mechanisms (singlet oxygen ((1)O2)). By combining different analytical techniques, we could establish that a type I photooxidation was the prevailing mechanism at acidic pH, although a type II mechanism is also present, but it is more important in alkaline solutions.


Subject(s)
Histidine/chemistry , Photosensitizing Agents/chemistry , Pterins/chemistry , Chromatography, High Pressure Liquid , Electron Transport , Hydrogen-Ion Concentration , Oxidation-Reduction , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Spectrophotometry, Ultraviolet , Thermodynamics , Ultraviolet Rays
4.
Photochem Photobiol Sci ; 14(2): 308-19, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25372069

ABSTRACT

Oil-in-water miniemulsions containing a mixture of monomers as the dispersed organic phase have been shown recently to be promising media for the development of photoinitiated polymerization processes. Albeit a crucial factor for a successful application, the efficiency of light absorption by the photoinitiator in these highly scattering systems is difficult to evaluate. In this work, a well-characterized water insoluble chemical actinometer (DFIS) replaced the oil-soluble photoinitiator, and was used as a probe and a model for UV light absorption in miniemulsions of variable droplet sizes and organic phase compositions (i.e. at different levels of scattered light). In the first step, the photon flux absorbed by the actinometer was determined in model miniemulsions based on an inert solvent (ethyl acetate), at a low oil phase content (3.0-6.0 wt%). For these low to moderately scattering systems, the photon flux absorbed by the actinometer in the miniemulsions was comparable to that in a homogeneous solution of ethyl acetate. In the second step, the absorbed photon flux was investigated in photopolymerizable miniemulsions (a mixture of acrylate monomers as oil phase). Surprisingly, in spite of much higher scattering coefficients than those found for ethyl acetate based miniemulsions of otherwise the same composition, the photon flux absorbed by the actinometer in photopolymerizable miniemulsions showed only a small decreasing trend. Such a result may be considered favorable for the further development of applications of photopolymerizations in miniemulsions.

5.
Org Biomol Chem ; 12(23): 3877-86, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24788302

ABSTRACT

Oxidized pterins, efficient photosensitizers under UV-A irradiation, accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder. In this work, we have investigated the ability of pterin (Ptr), the parent compound of oxidized pterins, to photosensitize the oxidation of the peptide α-melanocyte-stimulating hormone (α-MSH), which stimulates the production and release of melanin by melanocytes in skin and hair. Our results showed that Ptr is able to photoinduce the degradation of α-MSH upon UV-A irradiation and that the reaction is initiated by an electron transfer from the peptide to the triplet excited state of Ptr. The photosensitized process produces chemical changes in at least two different amino acid residues: tryptophan and tyrosine (Tyr). It was shown that α-MSH undergoes dimerization and oxidation, the former process taking place after the formation of Tyr radicals. The present findings are analyzed in the context of the general behavior of pterins as photosensitizers and the biological implications are discussed.


Subject(s)
Photolysis , Pterins/chemistry , alpha-MSH/radiation effects , Amino Acid Sequence , Chromatography, High Pressure Liquid , Dimerization , Mass Spectrometry , Molecular Sequence Data , Photolysis/radiation effects , Spectrometry, Fluorescence , Time Factors , Tryptophan/chemistry , Tyrosine/chemistry , Ultraviolet Rays , alpha-MSH/chemistry
6.
Environ Sci Process Impacts ; 16(4): 839-47, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24394661

ABSTRACT

The photoreactivity of chlorothalonil was studied by means of steady-state irradiation and laser-flash photolysis. Experiments were conducted in water containing acetonitrile as a co-solvent. This fungicide undergoes very slow phototransformation in the first stages of the reaction, but the consumption profile is auto-accelerated. To understand the reaction mechanism, we undertook a detailed study of the rates, products and transient species. The rates and photoproduct distribution vary greatly with the oxygen concentration. Concerning the transient species, we measured the absorption of the triplet, its yield of formation, and its reactivity with oxygen in various water-acetonitrile mixtures and with isopropanol. The reduced radical, CTH˙, could be produced and its transient spectrum was recorded. Combining all the experimental data, it is hypothesized that in the first step of the reaction CT is excited to the triplet state. The triplet has several possible fates including reduction by organic constituents to form the radical which gives photoproducts. Another characteristic of the CT triplet is its capacity to generate singlet oxygen. The production of this species was measured by phosphorescence and compared to the percentage of the triplet trapped by oxygen in air-saturated solutions. The yield varies from 0.88 in pure acetonitrile to 0.48 in water-acetonitrile (95 : 5, v/v). Therefore, in surface waters, chlorothalonil is expected to sensitize the photooxidation of micropollutants, and to be competitively phototransformed through reaction with any H donor or electron donor water constituents.


Subject(s)
Fungicides, Industrial/chemistry , Nitriles/chemistry , Water Pollutants, Chemical/chemistry , Lasers , Light , Models, Chemical , Photolysis
7.
Photochem Photobiol ; 90(2): 358-68, 2014.
Article in English | MEDLINE | ID: mdl-24033260

ABSTRACT

Various photosensitizers were grafted by conventional peptide coupling methods to functionalized silica with several macroscopic shapes (powders, films) or embedded in highly transparent and microporous silica xerogel monoliths. Owing to the transparency and free-standing shape of the monoliths, the transient species arising from irradiation of the PSs could be analyzed and were not strikingly different from those observed in solutions. The observed reactivity for either liquid-solid (α-terpinene oxygenation vs dehydrogenation) or gas-solid (dimethylsulfide, DMS, solvent-free oxidation) reactions was consistent with the properties of the excited states of the PSs under consideration. Immobilized anthraquinone-derived materials preferentially react in both cases by electron transfer from the substrate to the triplet state of the sensitizer, in spite of an efficient singlet oxygen production. The recently developed 9,14-dicyanobenzo[b]triphenylene-3-carboxylic acid, DBTP-COOH, efficiently reacts via energy transfer to yield singlet oxygen from its triplet state. It was shown to perform better than 9,10-dicyanoanthracene and rose bengal for DMS oxidation and α-terpinene photooxygenation to ascaridole, respectively. Thus, by a proper choice of the organic immobilized photocatalyst, it is possible to develop efficient and reusable materials, activated under visible light, for various applications and to tune the reaction pathway, opening the way to green oxidation processes.


Subject(s)
Light , Organic Chemicals/chemistry , Photosensitizing Agents/chemistry , Cyclohexane Monoterpenes , Microscopy, Electron, Transmission , Monoterpenes/chemistry , Oxidation-Reduction , Silicon Dioxide/chemistry , X-Ray Diffraction
8.
Photochem Photobiol Sci ; 13(2): 281-92, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24227162

ABSTRACT

10-Methyl phenothiazine (MPS) was chosen as a model compound to investigate the effects of compartmentalisation and of charged interfaces on the primary mechanisms involved in the phototoxic reactions related to phenothiazine drugs. Two most important pathways resulting from the interaction of the triplet excited state of MPS ((3)MPS*) with molecular oxygen ((3)O2) have to be considered: (i) energy transfer producing singlet oxygen ((1)O2) and (ii) electron transfer generating the superoxide anion (O2˙(-)) and the radical cation (MPS˙(+)). The quantum yields of (1)O2 production by MPS solubilized in the dispersed pseudo-phase of aqueous micellar systems were found to be similar to those determined in solvents of various polarities, regardless of the anionic or cationic nature of the surfactant (SDS or CTAC). However, micellar compartmentalisation and surfactant charge affect considerably both the sensitized and the self-sensitized photooxidation of MPS. The formation of 10-methyl phenothiazine sulfoxide (MPSO), produced by the reaction of MPS with (1)O2, proceeds at a higher rate in SDS micelles than in neat polar solvents. This result may be explained by the protonation of the zwitterionic intermediate Z (MPS(+)OO(-)) at the micellar interface to yield the corresponding cation C (MPS(+)OOH) that is stabilized in the negatively charged micelles and reacts much faster with MPS than Z to yield MPSO. The electron transfer reaction from (3)MPS* to O2 yielding MPS˙(+) and O2˙(-) is also enhanced in SDS micelles, as back electron transfer (BET) is prevented by ejection of O2˙(-) to the aqueous bulk phase and stabilization of MPS˙(+) in the anionic micelles. The size of the SDS micelles modulates the relative contribution of each pathway (formation of MPSO or MPS˙(+)) to the overall conversion of MPS to its oxidation products. Photooxidation of MPS in cationic micelles is a very slow process, as the formation of neither C nor MPS˙(+) is favoured in positively charged micelles.

9.
ACS Appl Mater Interfaces ; 6(1): 275-88, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24304089

ABSTRACT

The photophysical properties of several photosensitizers (PSs) included or grafted in silica monoliths were compared to their properties in solution. The effects of the solid support on their steady-state and transient absorption spectra, on their quantum yields of singlet oxygen ((1)O2) production, and on their ability to photoinduce the oxidation of dimethylsulfide (DMS) were investigated. Two cyanoanthracene derivatives (9,14-dicyanobenzo[b]triphenylene, DBTP, and 9,10-dicyanoanthracene, DCA), as well as three phenothiazine dyes (methylene blue, MB(+), new methylene blue, NMB(+), methylene violet, MV), were encapsulated in silica, analyzed and compared to two reference PSs (perinaphthenone, PN and rose bengal, RB). A DBTP derivative (3-[N-(N″-triethoxysilylpropyl-N'-hexylurea)]carboxamido-9,14-dicyanobenzo[b]triphenylene, 3) was also prepared and grafted onto silica. Thanks to the transparency and the free-standing shape of the monoliths, the complete spectroscopic characterization of the supported PSs was carried out directly at the gas-solid interface. The influence of the silica network, the PS, and the adsorption/grafting link between the PS and silica was investigated. The effects of PS concentration, gaseous atmosphere, humidity, and hydrophobicity on the production of (1)O2 were analyzed. With all PSs, (1)O2 production was very efficient (quantum yields of (1)O2 production, relative to PN, between 0.6 and 1), and this species was the only one involved in the pollutant photooxidation. The influence of the matrix on the PSs' photophysics could be considered as negligible. In contrast, the matrix effect on DMS photooxidation was extremely important: the gas diffusion inside the porous structure, and thus, the photoactivity of the materials, strictly depended on silica's surface area and porosity. Our results highlight the suitability of these silica structures as inert supports for the study of the photosensitizing properties at the gas-solid interface. Moreover, thanks to the adsorption properties of the matrix, the synthesized materials can be used as microphotoreactor for the (1)O2-mediated oxidation of volatile pollutants.

10.
Photochem Photobiol Sci ; 12(12): 2160-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24114181

ABSTRACT

New methylene blue (NMB+) and methylene violet (MV) are known for their photosensitizing properties for singlet oxygen ((1)O2) generation upon visible-light irradiation, and various examples of their use in the photodynamic inactivation of microorganisms and for photomedicinal purposes have been reported. However, their photophysical properties have never been extensively and systematically analyzed and compared. In the current work, we studied their absorption and fluorescence behavior relative to their parent compound, methylene blue (MB+), detected the transient species generated upon excitation of the photosensitizers and determined their quantum yields of singlet oxygen production. We could measure very high quantum yields of singlet oxygen production for all the studied compounds. NMB+ appeared similar to MB+, even though it produces (1)O2 much more efficiently, and was slightly influenced by the solvent. MV, in contrast, was much more sensitive to the chemical environment, and the transient species formed upon irradiation were different in methanol and acetonitrile. It appeared to be a very good singlet oxygen sensitizer, but the influence of the chemical environment should be carefully considered for any application. The comparative characterization of these sensitizers will represent a support for the determination and the understanding of the photochemical mechanisms occurring by using these phenothiazine dyes for various photobiological applications.

11.
Phys Chem Chem Phys ; 15(40): 17219-32, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24013434

ABSTRACT

In order to graft cyanoaromatic molecules onto various inert supports, we designed two new cyanoanthracene derivatives of benzo[b]triphenylene-9,14-dicarbonitrile (DBTP, 1), which already demonstrated good photosensitizing properties. We synthesized 3-(N-hydroxypropyl)carboxamido-9,14-dicyanobenzo[b]triphenylene, 3 and 3-(N-N0-Boc-aminohexyl)carboxamido-9,14-dicyanobenzo[b]triphenylene, 4 and compared their photophysical properties in acetonitrile relative to those of the parent compound 1 and its carboxylic derivative 9,14-dicyanobenzo[b]triphenylene-3-carboxylic acid, 2. The transient species were analysed and the quantum yields of singlet oxygen production (ΦΔ) determined in acetonitrile. The effect of chemical functionalization can be considered negligible, since absorption spectra, fluorescence emission spectra and fluorescence lifetimes do not significantly change with the substituent. The triplet-triplet absorption spectra and the triplet excited state lifetimes are similar for the whole series. For compounds 1-4 high values of ΦΔ, close to that of the standard sensitizer 1H-phenalen-1-one (PN, ΦΔ ≈ 1), and higher than that of the well-known photosensitizer 9,10-dicyanoanthracene (DCA), are due to very efficient intersystem crossing from the singlet to the triplet excited state and subsequent energy transfer to ground state oxygen ((3)O2). They belong to a class of very efficient photosensitizers, absorbing visible light and stable under irradiation, they may be functionalized without significant changes to their photophysical behaviour, and grafted onto various supports.

12.
Free Radic Biol Med ; 63: 467-75, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23747929

ABSTRACT

Pterins are normal components of cells and they have been previously identified as good photosensitizers under UV-A irradiation, inducing DNA damage and oxidation of nucleotides. In this work, we have investigated the ability of pterin (Ptr), the parent compound of oxidized pterins, to photosensitize the oxidation of another class of biomolecules, amino acids, using tryptophan (Trp) as a model compound. Irradiation of Ptr in the UV-A spectral range (350 nm) in aerated aqueous solutions containing Trp led to the consumption of the latter, whereas the Ptr concentration remained unchanged. Concomitantly, hydrogen peroxide (H2O2) was produced. Although Ptr is a singlet oxygen ((1)O2) sensitizer, the degradation of Trp was inhibited in O2-saturated solutions, indicating that a (1)O2-mediated process (type II oxidation) was not an important pathway leading to Trp oxidation. By combining different analytical techniques, we could establish that a type I photooxidation was the prevailing mechanism, initiated by an electron transfer from the Trp molecule to the Ptr triplet excited state, yielding the corresponding radical ions (Trp(·+)/Trp(-H)· and Ptr(·-)). The Trp reaction products that could be identified by UPLC-mass spectrometry are in agreement with this conclusion.


Subject(s)
Oxidation-Reduction , Photosensitizing Agents/metabolism , Pterins/metabolism , Tryptophan/metabolism , Electron Spin Resonance Spectroscopy , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/radiation effects , Nucleotides/metabolism , Photosensitizing Agents/pharmacology , Pterins/pharmacology , Singlet Oxygen/metabolism , Tryptophan/drug effects , Tryptophan/radiation effects , Ultraviolet Rays
13.
Photochem Photobiol ; 89(6): 1448-55, 2013.
Article in English | MEDLINE | ID: mdl-23683124

ABSTRACT

Pterins, heterocyclic compounds widespread in biological systems, accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder. Pterins have been previously identified as good photosensitizers under UV-A irradiation. In this work, we have investigated the ability of pterin (Ptr), the parent compound of oxidized pterins, to photosensitize the oxidation of tyrosine (Tyr) in aqueous solutions. Tyr is an important target in the study of the photodynamic effects of UV-A radiation because it is oxidized by singlet oxygen ((1)O2) and plays a key role in polymerization and cross-linking of proteins. Steady UV-A irradiation of solutions containing Ptr and Tyr led to the consumption of Tyr and dissolved O2, whereas the Ptr concentration remained unchanged. Concomitantly, hydrogen peroxide (H2O2) was produced. By combining different analytical techniques, we could establish that the mechanism of the photosensitized process involves an electron transfer from Tyr to the triplet excited state of Ptr. Mass spectrometry, chromatography and fluorescence were used to analyze the photoproducts. In particular, oxygenated and dimeric compounds were identified.


Subject(s)
Pterins/chemistry , Tyrosine/chemistry , Oxidation-Reduction , Photochemistry , Solutions , Water/chemistry
14.
Photochem Photobiol Sci ; 12(3): 527-35, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23232596

ABSTRACT

The mechanism of the photolysis of N-(4-hydroxyphenyl)ethanamide (paracetamol, PA), a widely prescribed analgesic and antipyretic drug, has been investigated in the absence and in the presence of oxygen. Identification of products and kinetic analyses were performed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and by ultra-performance liquid chromatography with a diode array detector (UPLC-PDA). The results show that, under irradiation at 254 nm and independently of the presence of oxygen, the predominant reaction pathway is a photo-Fries rearrangement (PFR), yielding the PA isomer 2'-amino-5'-hydroxyacetophenone (PAI). This reaction occurs from the singlet excited state of the molecule and involves the migration of the acetyl group onto the aromatic ring in the ortho-position to the amine moiety. The formation of 4-aminophenol (4-AP) was observed as a minor competitive pathway. The quantum yield of PA consumption (Φ(-PA)) was determined to be 1.0(±0.1) × 10(-3) by chemical actinometry. As its concentration increases, the PFR product (PAI) competes with PA for light absorption and undergoes, in the presence of oxygen, a photooxygenation process leading to the formation of a peroxyester.


Subject(s)
Acetaminophen/chemistry , Photolysis , Water/chemistry , Argon/chemistry , Hydrogen Peroxide/chemistry , Hydroxylation , Isomerism , Kinetics , Oxygen/chemistry , Solutions
15.
Photochem Photobiol Sci ; 11(11): 1744-55, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22940809

ABSTRACT

The reaction pathways following electronic excitation of 10-methyl phenothiazine (MPS) in the presence of oxygen have been investigated as a contribution to establish the mechanisms involved in the phototoxic reactions related to phenothiazine drugs. In the context of previously published results, the pathways of oxidation via the radical cation and/or by reactive oxygen species, such as singlet oxygen and superoxide anion, are of particular interest. The effects of polarity of the medium as well as of proton donors on the different reaction pathways, in particular on the formation of reactive oxygen species and the intermediates of the oxidation of 10-methyl phenothiazine, have been investigated. No reaction was observed in non-polar solvents. In polar solvents, both self-sensitized and sensitized singlet oxygen generation lead to the oxidation of MPS and the production of 10-methyl phenothiazine sulfoxide (MPSO) most probably via a zwitterionic persulfoxide. During self-sensitized photooxidation of MPS in the presence of proton donors, such as carboxylic acids, the zwitterionic intermediate is protonated to the corresponding cation that in turn facilitates the reaction with a second molecule of MPS. In the presence of strong acids however, the formation of the radical cation of MPS and of the superoxide anion, by electron transfer from the triplet excited state of MPS to molecular oxygen, competes efficiently with singlet oxygen formation. In this case, the scavenging of the superoxide anion by protons to yield its conjugated acid (hydroperoxyl radical) and the subsequent disproportionation of the latter prevents back electron transfer.


Subject(s)
Phenothiazines/chemistry , Electron Transport , Electrons , Energy Transfer , Oxidation-Reduction , Photolysis , Quantum Theory , Singlet Oxygen/chemistry , Ultraviolet Rays
16.
Photochem Photobiol Sci ; 11(6): 979-87, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22290295

ABSTRACT

7,8-Dihydrobiopterin (H(2)Bip) and 7,8-dihydroneopterin (H(2)Nep) belong to a class of heterocyclic compounds present in a wide range of living systems. H(2)Bip accumulates in the skin of patients suffering from vitiligo, whereas H(2)Nep is secreted by human macrophages when the cellular immune system is activated. We have investigated the photochemical reactivity of both compounds upon UV-A irradiation (320-400 nm), the chemical structures of the products and their thermal stability. The study was performed in neutral aqueous solutions. The reactions were followed by UV/Visible spectrophotometry and HPLC and the products were analyzed by means of electrospray ionization mass spectrometry and (1)H-NMR. Excitation of H(2)Bip and H(2)Nep leads to the formation, in each case, of two main isomeric dimers. The latter compounds undergo a thermal process that may consist in a retro [2 + 2]-cycloaddition and hydrolysis to yield the reactant (H(2)Bip or H(2)Nep) and a product that has incorporated a molecule of H(2)O.


Subject(s)
Biopterins/analogs & derivatives , Neopterin/analogs & derivatives , Biopterins/chemistry , Chromatography, High Pressure Liquid , Dimerization , Humans , Isomerism , Macrophages/metabolism , Magnetic Resonance Spectroscopy , Neopterin/chemistry , Neopterin/metabolism , Photolysis , Spectrometry, Mass, Electrospray Ionization , Temperature , Ultraviolet Rays
17.
Photochem Photobiol Sci ; 11(2): 409-17, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22212735

ABSTRACT

UV-A (320-400 nm) and UV-B (280-320 nm) radiation causes damage to DNA and other biomolecules through reactions induced by different endogenous or exogenous photosensitizers. Lumazines are heterocyclic compounds present in biological systems as biosynthetic precursors and/or products of metabolic degradation. The parent and unsubstituted compound called lumazine (pteridine-2,4(1,3H)-dione; Lum) is able to act as photosensitizer through electron transfer-initiated oxidations. To get further insight into the mechanisms involved, we have studied in detail the oxidation of 2'-deoxyadenosine 5'-monophosphate (dAMP) photosensitized by Lum in aqueous solution. After UV-A or UV-B excitation of Lum and formation of its triplet excited state ((3)Lum*), three reaction pathways compete for the deactivation of the latter: intersystem crossing to singlet ground state, energy transfer to O(2), and electron transfer between dAMP and (3)Lum* yielding the corresponding pair of radical ions (Lum˙(-) and dAMP˙(+)). In the following step, the electron transfer from Lum˙(-) to O(2) regenerates Lum and forms the superoxide anion (O(2)˙(-)), which undergoes disproportionation into H(2)O(2) and O(2). Finally dAMP˙(+) participates in subsequent reactions to yield products.


Subject(s)
Photochemical Processes , Photosensitizing Agents/chemistry , Pteridines/chemistry , Deoxyadenine Nucleotides/chemistry , Electron Transport , Hydrogen-Ion Concentration , Oxidation-Reduction , Solubility , Superoxides/chemistry
18.
Phys Chem Chem Phys ; 13(16): 7419-25, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21409193

ABSTRACT

Pterins belong to a class of heterocyclic compounds present in a wide range of living systems and accumulate in the skin of patients affected by vitiligo, a depigmentation disorder. The study of the emission of 7,8-dihydropterins is difficult because these compounds are more or less unstable in the presence of O(2) and their solutions are contaminated with oxidized pterins which have much higher fluorescence quantum yields (Φ(F)). In this work, the emission properties of six compounds of the dihydropterin family (6-formyl-7,8-dihydropterin (H(2)Fop), sepiapterin (Sep), 7,8-dihydrobiopterin (H(2)Bip), 7,8-dihydroneopterin (H(2)Nep), 6-hydroxymethyl-7,8-dihydropterin (H(2)Hmp), and 6-methyl-7,8-dihydropterin (H(2)Mep)) have been studied in aqueous solution. The fluorescence characteristics (spectra, Φ(F), lifetimes (τ(F))) of the neutral form of these compounds have been investigated using the single-photon-counting technique. Φ(F) and τ(F) values obtained lie in the ranges 3-9 × 10(-3) and 0.18-0.34 ns, respectively. The results are compared to those previously reported for oxidized pterins.


Subject(s)
Oxygen/chemistry , Pterins/chemistry , Water/chemistry , Biopterins/analogs & derivatives , Biopterins/chemistry , Neopterin/analogs & derivatives , Neopterin/chemistry , Oxidation-Reduction , Quantum Theory , Solutions/chemistry , Spectrometry, Fluorescence
19.
Photochem Photobiol ; 87(1): 51-5, 2011.
Article in English | MEDLINE | ID: mdl-21073478

ABSTRACT

7,8-Dihydroneopterin (H(2) Nep) is secreted during the oxidative burst of stimulated macrophages. The photochemistry of H(2) Nep was investigated in neutral aqueous solutions exposed to UV-A radiation (320-400nm) at room temperature. The kinetics were followed by UV/Vis spectrophotometry and HPLC, whereas the photoproducts were analyzed by electrospray ionization mass spectrometry. Excitation of H(2) Nep leads to the formation of isomeric dimers with molecular masses equal to exactly twice the molecular mass of the reactant. The corresponding quantum yield of H(2) Nep consumption (Φ(-R) =(3.8±0.5)×10(-2)) was independent of O(2) and reactant concentrations. Mechanistic implications are discussed.


Subject(s)
Neopterin/analogs & derivatives , Photochemistry , Ultraviolet Rays , Chromatography, High Pressure Liquid , Dimerization , Molecular Weight , Neopterin/chemistry , Solutions , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet , Water
20.
Free Radic Biol Med ; 49(6): 1014-22, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20600840

ABSTRACT

Pterins (Pt) are heterocyclic compounds widespread in living systems. They participate in relevant biological processes, such as metabolic redox reactions, and can photoinduce the oxidation of biomolecules through electron-transfer mechanisms. We have investigated the electron-transfer pathways initiated by excited states of pterin (Ptr) and 6-methylpterin (Mep), selected as model compounds. The experiments were carried out in aqueous solutions under continuous UV-A irradiation, in the presence and in the absence of ethylenediaminetetraacetic acid (EDTA), used as an electron donor. The reactions were followed by UV/Vis spectrophotometry, HPLC, and an enzymatic method for H(2)O(2) determination. The formation of the superoxide anion (O(2)(*-)) was investigated by electron paramagnetic resonance-spin trapping. The triplet excited states of Ptr and Mep are efficient electron acceptors, able to oxidize a Pt molecule in its ground state. The resulting radical anion (Pt(*-)) reacts with dissolved O(2) to yield O(2)(*-), regenerating the pterin. In the presence of EDTA, this reaction competes efficiently with the anaerobic reaction between Pt(*-) and EDTA(*+), yielding the corresponding stable dihydroderivatives H(2)Pt. The effects of EDTA and dissolved O(2) concentrations on the efficiencies of the different competing pathways were analyzed.


Subject(s)
Hydrogen Peroxide/chemistry , Photosensitizing Agents/chemistry , Pterins/chemistry , Chromatography, High Pressure Liquid , Edetic Acid/chemistry , Electron Spin Resonance Spectroscopy , Electron Transport/radiation effects , In Vitro Techniques , Oxidation-Reduction/radiation effects , Photochemical Processes , Solutions , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...