Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1272119, 2023.
Article in English | MEDLINE | ID: mdl-38077369

ABSTRACT

A real-world population-based longitudinal study, aimed at determining the magnitude and duration of immunity induced by different types of vaccines against COVID-19, started in 2021 by enrolling a cohort of 2,497 individuals at time of their first vaccination. The study cohort included both healthy adults aged ≤65 years and elderly subjects aged >65 years with two or more co-morbidities. Here, patterns of anti-SARS-CoV-2 humoral and cell-mediated specific immune response, assessed on 1,182 remaining subjects, at 6 (T6) and 12 months (T12) after the first vaccine dose, are described. At T12 median anti-Spike IgG antibody levels were increased compared to T6. The determinants of increased anti-Spike IgG were the receipt of a third vaccine dose between T6 and T12 and being positive for anti-Nucleocapside IgG at T12, a marker of recent infection, while age had no significant effect. The capacity of T12 sera to neutralize in vitro the ancestral B strain and the Omicron BA.5 variant was assessed in a subgroup of vaccinated subjects. A correlation between anti-S IgG levels and sera neutralizing capacity was identified and higher neutralizing capacity was evident in healthy adults compared to frail elderly subjects and in those who were positive for anti-Nucleocapside IgG at T12. Remarkably, one third of T12 sera from anti-Nucleocapside IgG negative older individuals were unable to neutralize the BA.5 variant strain. Finally, the evaluation of T-cell mediated immunity showed that most analysed subjects, independently from age and comorbidity, displayed Spike-specific responses with a high degree of polyfunctionality, especially in the CD8 compartment. In conclusion, vaccinated subjects had high levels of circulating antibodies against SARS-CoV-2 Spike protein 12 months after the primary vaccination, which increased as compared to T6. The enhancing effect could be attributable to the administration of a third vaccine dose but also to the occurrence of breakthrough infection. Older individuals, especially those who were anti-Nucleocapside IgG negative, displayed an impaired capacity to neutralize the BA.5 variant strain. Spike specific T-cell responses, able to sustain immunity and maintain the ability to fight the infection, were present in most of older and younger subjects assayed at T12.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Aged , Humans , COVID-19 Vaccines , Follow-Up Studies , Longitudinal Studies , COVID-19/prevention & control , Vaccination , Immunity, Cellular , Immunoglobulin G
2.
Lupus ; 32(3): 394-400, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36607313

ABSTRACT

OBJECTIVES: To evaluate humoral and cell-mediated response after three doses of BNT162b2 SARS-CoV-2 vaccine in patients with systemic lupus erythematosus (SLE) treated with Belimumab (BLM). METHODS: SLE patients were vaccinated with three doses of BNT162b2-mRNA vaccine (two-dose primary vaccination, third booster dose after 6 months). The humoral immune response was assessed one and 6 months after the second dose (T1, T2), and 6 months after the booster dose (T3). Serological assay was performed (The Liaison® SARS-CoV-2 TrimericS IgG chemiluminescent). Spike-specific T-cell response was monitored 6 months after the second vaccine dose and the percentage of cytokines producing T cells was assessed by flow cytometry. RESULTS: Twelve patients [12F; median age 46 years (IQR 8.25); median disease duration 156 months (IQR 188)] were enrolled. At T1, all patients showed seroconversion (median anti-Spike IgG levels 1610 BAU/mL, IQR 1390). At T2--day of the third dose--a significant reduction of median anti-Spike IgG antibodies levels was observed [214 BAU/mL (IQR 94); p = 0.0009]. Anti-Spike IgG were significantly increased at T3, reaching a median value of 1440 BAU/mL (IQR 1316; p = 0.005). Despite declining humoral immunity, almost 60% of patients mounted a virus-specific CD4 + T-cell response 6 months after primary vaccination. CONCLUSIONS: BLM does not impair humoral response to primary BNT162b2 SARS-CoV-2 vaccination. During the follow-up, a decline in antibody levels is evident and the third dose is crucial to increase the specific immune response. Finally, we observed a recall T-cell response to the Spike antigen 6 months after the first vaccination cycle.


Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , Humans , Middle Aged , BNT162 Vaccine , COVID-19 Vaccines , SARS-CoV-2 , Immunoglobulin G , Antibodies, Viral , Immunity
3.
J Am Med Dir Assoc ; 24(2): 140-147.e2, 2023 02.
Article in English | MEDLINE | ID: mdl-36587928

ABSTRACT

OBJECTIVES: Nursing home (NH) residents have been significantly affected by the coronavirus disease 2019 (COVID-19) pandemic. Studies addressing the immune responses induced by COVID-19 vaccines in NH residents have documented a good postvaccination antibody response and the beneficial effect of a third booster vaccine dose. Less is known about vaccine-induced activation of cell-mediated immune response in frail older individuals in the long term. The aim of the present study is to monitor messenger RNA SARS-CoV-2 vaccine-induced T-cell responses in a sample of Italian NH residents who received primary vaccine series and a third booster dose and to assess the interaction between T-cell responses and humoral immunity. DESIGN: Longitudinal cohort study. SETTING AND PARTICIPANTS: Thirty-four residents vaccinated with BNT162b2 messenger RNA SARS-CoV-2 vaccine between February and April 2021 and who received a third BNT162b2 booster dose between October and November 2021 were assessed for vaccine-induced immunity 6 (prebooster) and 12 (postbooster) months after the first BNT162b2 vaccine dose. METHODS: Pre- and postbooster cell-mediated immunity was assessed by intracellular cytokine staining of peripheral blood mononuclear cells stimulated in vitro with peptides covering the immunodominant sequence of SARS-CoV-2 spike protein. The simultaneous production of interferon-γ, tumor necrosis factor-α, and interleukin-2 was measured. Humoral immunity was assessed in parallel by measuring serum concentration of antitrimeric spike IgG antibodies. RESULTS: Before the booster vaccination, 31 out of 34 NH residents had a positive cell-mediated immunity response to spike. Postbooster, 28 out of 34 had a positive response. Residents without a previous history of SARS-CoV-2 infection, who had a lower response prior the booster administration, showed a greater increase of T-cell responses after the vaccine booster dose. Humoral and cell-mediated immunity were, in part, correlated but only before booster vaccine administration. CONCLUSIONS AND IMPLICATIONS: The administration of the booster vaccine dose restored spike-specific T-cell responses in SARS-CoV-2 naïve residents who responded poorly to the first immunization, while a previous SARS-CoV-2 infection had an impact on the magnitude of vaccine-induced cell-mediated immunity at earlier time points. Our findings imply the need for a continuous monitoring of the immune status of frail NH residents to adapt future SARS-CoV-2 vaccination strategies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , RNA, Messenger , BNT162 Vaccine , SARS-CoV-2 , Leukocytes, Mononuclear , Longitudinal Studies , T-Lymphocytes , COVID-19/prevention & control , Vaccination , Nursing Homes
4.
Front Immunol ; 13: 1021396, 2022.
Article in English | MEDLINE | ID: mdl-36389704

ABSTRACT

To date there has been limited head-to-head evaluation of immune responses to different types of COVID-19 vaccines. A real-world population-based longitudinal study was designed with the aim to define the magnitude and duration of immunity induced by each of four different COVID-19 vaccines available in Italy at the time of this study. Overall, 2497 individuals were enrolled at time of their first vaccination (T0). Vaccine-specific antibody responses induced over time by Comirnaty, Spikevax, Vaxzevria, Janssen Ad26.COV2.S and heterologous vaccination were compared up to six months after immunization. On a subset of Comirnaty vaccinees, serology data were correlated with the ability to neutralize a reference SARS-CoV-2 B strain, as well as Delta AY.4 and Omicron BA.1. The frequency of SARS-CoV-2-specific CD4+ T cells, CD8+ T cells, and memory B cells induced by the four different vaccines was assessed six months after the immunization. We found that mRNA vaccines are stronger inducer of anti-Spike IgG and B-memory cell responses. Humoral immune responses are lower in frail elderly subjects. Neutralization of the Delta AY.4 and Omicron BA.1 variants is severely impaired, especially in older individuals. Most vaccinees display a vaccine-specific T-cell memory six months after the vaccination. By describing the immunological response during the first phase of COVID-19 vaccination campaign in different cohorts and considering several aspects of the immunological response, this study allowed to collect key information that could facilitate the implementation of effective prevention and control measures against SARS-CoV-2.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Aged , COVID-19 Vaccines , COVID-19/prevention & control , Longitudinal Studies , Ad26COVS1 , SARS-CoV-2
5.
Diagn Microbiol Infect Dis ; 102(1): 115586, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34742119

ABSTRACT

We determined the kinetics of anti-SARS-CoV-2 antibody response in fifteen hospitalized COVID-19 patients. Patients were divided into mild/moderate (mild, n = 1; moderate, n = 4) or severe (n = 10) and virus-specific anti-Nucleocapsid IgM, anti-Spike IgG and anti-Spike IgA were measured in serial serum samples collected 0 to 15 days after hospital admission. Surrogate neutralization assays were performed by testing inhibition of ACE-2 binding to Spike. In 3 patients (2 severe and 1 moderate case), serum antibodies and T-cell memory were monitored 6 months after baseline. Although IgM response tended to appear first, patients affected by less severe disease were more prone to an early IgG/IgA response. Neutralization of Spike binding to ACE2 correlated with anti-Spike IgG and IgA. IgG and IgA antibody response persisted at the 6 months follow-up. A recall T-cell response to the Spike antigen was observed in 2 out of 3 patients, not related to disease severity.


Subject(s)
Antibodies, Viral/blood , COVID-19/etiology , Immunoglobulin A/blood , Immunoglobulin G/blood , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , Female , Hospitalization , Humans , Immunoglobulin M/blood , Immunologic Memory , Male , Middle Aged , Neutralization Tests , Patient Acuity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology
6.
Diagn Microbiol Infect Dis ; 105(1): 115539, 2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34624706

ABSTRACT

We determined the kinetics of anti-SARS-CoV-2 antibody response in fifteen hospitalized COVID-19 patients. Patients were divided into mild/moderate (mild, n = 1; moderate, n = 4) or severe (n = 10) and virus-specific anti-Nucleocapsid IgM, anti-Spike IgG and anti-Spike IgA were measured in serial serum samples collected 0 to 15 days after hospital admission. Surrogate neutralization assays were performed by testing inhibition of ACE-2 binding to Spike. In 3 patients (2 severe and 1 moderate case), serum antibodies and T-cell memory were monitored 6 months after baseline. Although IgM response tended to appear first, patients affected by less severe disease were more prone to an early IgG/IgA response. Neutralization of Spike binding to ACE2 correlated with anti-Spike IgG and IgA. IgG and IgA antibody response persisted at the 6 months follow-up. A recall T-cell response to the Spike antigen was observed in 2 out of 3 patients, not related to disease severity.

7.
Cancers (Basel) ; 13(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066801

ABSTRACT

We developed an innovative method to induce antigen-specific CD8+ T cytotoxic lymphocyte (CTL) immunity based on in vivo engineering of extracellular vesicles (EVs). This approach employs a DNA vector expressing a mutated HIV-1 Nef protein (Nefmut) deprived of the anti-cellular effects typical of the wild-type isoform, meanwhile showing an unusual efficiency of incorporation into EVs. This function persists even when foreign antigens are fused to its C-terminus. In this way, Nefmut traffics large amounts of antigens fused to it into EVs spontaneously released by the recipient cells. We previously provided evidence that mice injected with a DNA vector expressing the Nefmut/HPV16-E7 fusion protein developed an E7-specific CTL immune response as detected 2 weeks after the second immunization. Here, we extended and optimized the anti-HPV16 CD8+ T cell immune response induced by the endogenously engineered EVs, and evaluated the therapeutic antitumor efficacy over time. We found that the co-injection of DNA vectors expressing Nefmut fused with E6 and E7 generated a stronger anti-HPV16 immune response compared to that observed in mice injected with the single vectors. When HPV16-E6 and -E7 co-expressing tumor cells were implanted before immunization, all mice survived at day 44, whereas no mice injected with either void or Nefmut-expressing vectors survived until day 32 after tumor implantation. A substantial part of immunized mice (7 out of 12) cleared the tumor. When the cured mice were re-challenged with a second tumor cell implantation, none of them developed tumors. Both E6- and E7-specific CD8+ T immunities were still detectable at the end of the observation time. We concluded that the immunity elicited by engineered EVs, besides counteracting and curing already developed tumors, was strong enough to guarantee the resistance to additional tumor attacks. These results can be of relevance for the therapy of both metastatic and relapsing tumors.

8.
Vaccines (Basel) ; 9(4)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921215

ABSTRACT

Intramuscular injection of DNA vectors expressing the extracellular vesicle (EV)-anchoring protein Nefmut fused at its C-terminus to viral and tumor antigens elicit a potent, effective, and anti-tolerogenic CD8+ T cell immunity against the heterologous antigen. The immune response is induced through the production of EVs incorporating Nefmut-derivatives released by muscle cells. In the perspective of a possible translation into the clinic of the Nefmut-based vaccine platform, we aimed at increasing its safety profile by identifying the minimal part of Nefmut retaining the EV-anchoring protein property. We found that a C-terminal deletion of 29-amino acids did not affect the ability of Nefmut to associate with EVs. The EV-anchoring function was also preserved when antigens from both HPV16 (i.e., E6 and E7) and SARS-CoV-2 (i.e., S1 and S2) were fused to its C-terminus. Most important, the Nefmut C-terminal deletion did not affect levels, quality, and diffusion at distal sites of the antigen-specific CD8+ T immunity. We concluded that the C-terminal Nefmut truncation does not influence stability, EV-anchoring, and CD8+ T cell immunogenicity of the fused antigen. Hence, the C-terminal deleted Nefmut may represent a safer alternative to the full-length isoform for vaccines in humans.

9.
Cytokine Growth Factor Rev ; 51: 40-48, 2020 02.
Article in English | MEDLINE | ID: mdl-31926807

ABSTRACT

HIV-1 infection is efficiently controlled by combination anti-retroviral therapy (cART). However, despite preventing disease progression, cART does not eradicate virus infection which persists in a latent form for an individual's lifetime. The latent reservoir comprises memory CD4+ T lymphocytes, macrophages, and dendritic cells; however, for the most part, the reservoir is generated by virus entry into activated CD4+ T lymphocytes committed to return to a resting state, even though resting CD4+ T lymphocytes can be latently infected as well. The HIV-1 reservoir is not recognized by the immune system, is quite stable, and has the potential to re-seed systemic viremia upon cART interruption. Viral rebound can occur even after a long period of cART interruption. This event is most likely a consequence of the extended half-life of the HIV-1 reservoir, the maintenance of which is not clearly understood. Several recent studies have identified extracellular vesicles (EVs) as a driving force contributing to HIV-1 reservoir preservation. In this review, we discuss recent findings in the field of EV/HIV-1 interplay, and then propose a mechanism through which EVs may contribute to HIV-1 persistence despite cART. Understanding the basis of the HIV-1 reservoir maintenance continues to be a matter of great relevance in view of the limitations of current strategies aimed at HIV-1 eradication.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Cell Communication/immunology , Disease Reservoirs/virology , Extracellular Vesicles/physiology , HIV Infections/immunology , Virus Latency , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/immunology , Extracellular Space , HIV Infections/drug therapy , HIV-1 , Humans , Virus Replication
10.
Int J Nanomedicine ; 14: 8755-8768, 2019.
Article in English | MEDLINE | ID: mdl-31806970

ABSTRACT

PURPOSE: Single-chain variable fragments (scFvs) are one of the smallest antigen-binding units having the invaluable advantage to be expressed by a unique short open reading frame (ORF). Despite their reduced size, spontaneous cell entry of scFvs remains inefficient, hence precluding the possibility to target intracellular antigens. Here, we describe an original strategy to deliver scFvs inside target cells through engineered extracellular vesicles (EVs). This approach relies on the properties of a Human Immunodeficiency Virus (HIV)-1 Nef mutant protein referred to as Nefmut. It is a previously characterized Nef allele lacking basically all functions of wt Nef, yet strongly accumulating in the EV lumen also when fused at its C-terminus with a foreign protein. To gain the proof-of-principle for the efficacy of the proposed strategy, the tumor-promoting Human Papilloma Virus (HPV)16-E7 protein was considered as a scFv-specific intracellular target. The oncogenic effect of HPV16-E7 relies on its binding to the tumor suppressor pRb protein leading to a dysregulated cell duplication. Interfering with this interaction means impairing the HPV16-E7-induced cell proliferation. METHODS: The Nefmut gene was fused in frame at its 3'-terminus with the ORF coding for a previously characterized anti-HPV16-E7 scFv. Interaction between the Nefmut-fused anti-HPV16-E7 scFv and the HPV16-E7 protein was tested by both confocal microscope and co-immunoprecipitation analyses on co-transfected cells. The in cis anti-proliferative effect of the Nefmut/anti-HPV16-E7 scFv was assayed by transfecting HPV16-infected cells. The anti-proliferative effect of EVs engineered with Nefmut/anti-HPV16-E7 scFv on HPV16-E7-expressing cells was evaluated in two ways: i) through challenge with purified EVs by a Real-Time Cell Analysis system and ii) in transwell co-cultures by an MTS-based assay. RESULTS: The Nefmut/anti-HPV16-E7 scFv chimeric product is efficiently uploaded in EVs, binds HPV16-E7, and inhibits the proliferation of HPV16-E7-expressing cells. Most important, challenge with cell-free EVs incorporating the Nefmut/anti-HPV16-E7 scFv led to the inhibition of proliferation of HPV16-E7-expressing cells. The proliferation of these cells was hindered also when they were co-cultured in transwells with cells producing EVs uploading Nefmut/anti-HPV16-E7 scFv. CONCLUSION: Our data represent the proof-of-concept for the possibility to target intracellular antigens through EV-mediated delivery of scFvs. This finding could be relevant to design novel methods of intracellular therapeutic interventions.


Subject(s)
Extracellular Vesicles/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/virology , Single-Chain Antibodies/administration & dosage , Bystander Effect , Cell Line , Cell Proliferation , Coculture Techniques , Exosomes/immunology , Exosomes/metabolism , Extracellular Vesicles/genetics , Human papillomavirus 16/immunology , Human papillomavirus 16/pathogenicity , Humans , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/prevention & control , Single-Chain Antibodies/genetics , Transfection , nef Gene Products, Human Immunodeficiency Virus/genetics
11.
J Mol Med (Berl) ; 97(8): 1139-1153, 2019 08.
Article in English | MEDLINE | ID: mdl-31161312

ABSTRACT

Intrinsic genetic instability of tumor cells leads to continuous production of mutated proteins referred to as tumor-specific neoantigens. Generally, they are recognized as nonself products by the host immune system. However, an effective adaptive response clearing neoantigen-expressing cells is lost in tumor diseases. Most advanced therapeutic strategies aim at inducing neoantigen-specific immune activation through personalized approaches. They include tumor cell exome sequencing, human leukocyte antigen (HLA) typing, synthesis, and injection of peptides/RNA with adjuvants. Here, we propose an innovative method to induce a CD8+ T cytotoxic lymphocyte (CTL) immune response against tumor neoantigens bypassing the steps needed in current therapeutic strategies of personalized vaccination. We assumed that tumor cells can be the most efficient and precise factory of major histocompatibility complex (MHC) class I-associated, tumor neoantigen-derived peptides. Hence, endowing tumor cells with professional antigen-presenting functions would prime CD8+ T lymphocytes towards a response against nonself tumor antigens. To explore this possibility, both adenocarcinoma and melanoma human cells were engineered to express both CD80 and CD86 costimulatory molecules. HLA-matched lymphocytes were then primed through cocultivation with the engineered tumor cells. The generation of tumor-specific CD8+ T lymphocytes was tested through the combined analysis of cell activation markers, formation of immunologic synapses, generation of tumor antigen-specific CD8+ T lymphocytes, and cytotoxic activity. Our data consistently indicate that tumor cells endowed with professional antigen-presenting functions can generate an effective tumor-specific CTL immune response. This finding may open avenues towards the development of innovative antitumor immunotherapies. KEY MESSAGES: We established a novel method to induce antitumor CTLs without a need to identify TAAs and/or tumor neoantigens. This strategy relies on transducing tumor cells with a retroviral vector expressing both CD80 and CD86. In this way, tumor cells prime naïve CD8+ T lymphocytes in a way that CTLs killing the same tumor cells are generated. These findings open the way towards preclinical assays in the perspective to introduce this antitumor immunotherapy strategy in clinic.


Subject(s)
Antigen Presentation , Antigens, Neoplasm , Cancer Vaccines , Cytotoxicity, Immunologic , Dendritic Cells , Neoplasms , T-Lymphocytes, Cytotoxic , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Coculture Techniques , Dendritic Cells/immunology , Dendritic Cells/pathology , HEK293 Cells , Humans , MCF-7 Cells , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology
12.
Curr Drug Targets ; 20(1): 87-95, 2019.
Article in English | MEDLINE | ID: mdl-29779478

ABSTRACT

BACKGROUND: Eukaryotic cells release vesicles of different sizes under both physiological and pathological conditions. On the basis of the respective biogenesis, extracellular vesicles are classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are considered tools for innovative therapeutic interventions, especially when engineered with effector molecules. The delivery functions of exosomes are favored by a number of typical features. These include their small size (i.e., 50-200 nm), the membrane composition tightly similar to that of producer cells, lack of toxicity, stability in serum as well as other biological fluids, and accession to virtually any organ and tissue including central nervous system. However, a number of unresolved questions still affects the possible use of exosomes in therapy. Among these are the exact identification of both in vitro and ex vivo produced vesicles, their large-scale production and purification, the uploading efficiency of therapeutic macromolecules, and the characterization of their pharmacokinetics. OBJECTIVE: Here, we discuss two key aspects to be analyzed before considering exosomes as a tool of delivery for the desired therapeutic molecule, i.e., techniques of engineering, and their in vivo biodistribution/ pharmacokinetics. In addition, an innovative approach aimed at overcoming at least part of the obstacles towards a safe and efficient use of exosomes in therapy will be discussed. CONCLUSION: Several biologic features render exosomes an attractive tool for the delivery of therapeutic molecules. They will surely be a part of innovative therapeutic interventions as soon as few still unmet technical hindrances will be overcome.


Subject(s)
Drug Delivery Systems/methods , Exosomes/genetics , Genetic Engineering/methods , Animals , Biotechnology/methods , Cell Line, Tumor , Humans , Mice , Models, Animal , Tissue Distribution
13.
Mol Biotechnol ; 60(11): 773-782, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30167966

ABSTRACT

Eukaryotic cells constitutively produce nanovesicles of 50-150 nm of diameter, referred to as exosomes, upon release of the contents of multivesicular bodies (MVBs). We recently characterized a novel, exosome-based way to induce cytotoxic T lymphocyte (CTL) immunization against full-length antigens. It is based on DNA vectors expressing products of fusion between the exosome-anchoring protein Nef mutant (Nefmut) with the antigen of interest. The strong efficiency of Nefmut to accumulate in MVBs results in the production of exosomes incorporating huge amounts of the desired antigen. When translated in animals, the injection of Nefmut-based DNA vectors generates engineered exosomes whose internalization in antigen-presenting cells induces cross-priming and antigen-specific CTL immunity. Here, we describe the molecular strategies we followed to produce DNA vectors aimed at generating immunogenic exosomes potentially useful to elicit a CTL immune response against antigens expressed by the etiologic agents of major chronic viral infections, i.e., HIV-1, HBV, and the novel tumor-associated antigen HOXB7. Unique methods intended to counteract intrinsic RNA instability and nuclear localization of the antigens have been developed. The success we met with the production of these engineered exosomes opens the way towards pre-clinic experimentations devoted to the optimization of new vaccine candidates against major infectious and tumor pathologies.


Subject(s)
Exosomes/genetics , Genetic Vectors/administration & dosage , T-Lymphocytes, Cytotoxic/immunology , Acquired Immunodeficiency Syndrome/drug therapy , Exosomes/immunology , Gene Products, nef/genetics , Genetic Vectors/immunology , HEK293 Cells , Hepatitis B/drug therapy , Humans , Neoplasms/drug therapy , Vaccines/immunology
14.
J Mol Med (Berl) ; 96(2): 211-221, 2018 02.
Article in English | MEDLINE | ID: mdl-29282521

ABSTRACT

We recently described a novel biotechnological platform for the production of unrestricted cytotoxic T lymphocyte (CTL) vaccines. It relies on in vivo engineering of exosomes, i.e., nanovesicles constitutively released by all cells, with full-length antigens of choice upon fusion with an exosome-anchoring protein referred to as Nefmut. They are produced upon intramuscular injection of a DNA vector and, when uploaded with a viral tumor antigen, were found to elicit an immune response inhibiting the tumor growth in a model of transplantable tumors. However, for a possible application in cancer immunotherapy, a number of key issues remained unmet. Among these, we investigated: (i) whether the immunogenic stimulus induced by the engineered exosomes can break immune tolerance, and (ii) their effectiveness when applied in human system. As a model of immune tolerance, we considered mice transgenic for the expression of activated rat HER2/neu which spontaneously develop adenocarcinomas in all mammary glands. When these mice were injected with a DNA vector expressing the product of fusion between Nefmut and the extracellular domain of HER2/neu, antigen-specific CD8+ T lymphocytes became readily detectable. This immune response associated with a HER2-directed CTL activity and a significant delay in tumor development. On the other hand, through cross-priming experiments, we demonstrated the effectiveness of the engineered exosomes emerging from transfected human primary muscle cells in inducing antigen-specific CTLs. We propose our CTL vaccine platform as part of new immunotherapy strategies against tumors expressing self-antigens, i.e., products highly expressed in oncologic lesions but tolerated by the immune system. KEY MESSAGES: We established a novel, exosome-based method to produce unrestricted CTL vaccines. This strategy is effective in breaking the tolerance towards tumor self-antigens. Our method is also useful to elicit antigen-specific CTL immunity in humans. These findings open the way towards the use of this antitumor strategy in clinic.


Subject(s)
Dendritic Cells/immunology , Exosomes/immunology , Neoplasms/therapy , Receptor, ErbB-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Cells, Cultured , Humans , Immune Tolerance , Immunotherapy , Mice, Transgenic , Muscles/cytology , Neoplasms/pathology , Receptor, ErbB-2/genetics
15.
Biotechnol J ; 13(4): e1700443, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29274250

ABSTRACT

Exosomes are 50-150 nm sized nanovesicles released by all eukaryotic cells. The authors very recently described a method to engineer exosomes in vivo with the E7 protein of Human Papilloma Virus (HPV). This technique consists in the intramuscular injection of a DNA vector expressing HPV-E7 fused at the C-terminus of an exosome-anchoring protein, that is, Nefmut , the authors previously characterized for its high levels of incorporation in exosomes. In this configuration, the ≈11 kDa E7 protein elicited a both strong and effective antigen-specific cytotoxic T lymphocyte (CTL) immunity. Attempting to establish whether this method could have general applicability, the authors expanded the immunogenicity studies toward an array of viral products of various origin and size including Ebola Virus VP24, VP40 and NP, Influenza Virus NP, Crimean-Congo Hemorrhagic Fever NP, West Nile Virus NS3, and Hepatitis C Virus NS3. All antigens appeared stable upon fusion with Nefmut , and are uploaded in exosomes at levels comparable to Nefmut . When injected in mice, DNA vectors expressing the diverse fusion products elicited a well detectable antigen-specific CD8+ T cell response associating with a cytotoxic activity potent enough to kill peptide-loaded and/or antigen-expressing syngeneic cells. These data definitely proven both effectiveness and flexibility of this innovative CTL vaccine platform.


Subject(s)
Antigens, Viral/genetics , Exosomes/immunology , T-Lymphocytes, Cytotoxic/metabolism , Viral Vaccines/administration & dosage , Animals , Antigens, Viral/immunology , Cell Line , Genes, nef , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , HEK293 Cells , Humans , Mice , Particle Size , T-Lymphocytes, Cytotoxic/immunology , Viral Vaccines/immunology
16.
Int J Nanomedicine ; 12: 4579-4591, 2017.
Article in English | MEDLINE | ID: mdl-28694699

ABSTRACT

We recently proved that exosomes engineered in vitro to deliver high amounts of HPV E7 upon fusion with the Nefmut exosome-anchoring protein elicit an efficient anti-E7 cytotoxic T lymphocyte immune response. However, in view of a potential clinic application of this finding, our exosome-based immunization strategy was faced with possible technical difficulties including industrial manufacturing, cost of production, and storage. To overcome these hurdles, we designed an as yet unproven exosome-based immunization strategy relying on delivery by intramuscular inoculation of a DNA vector expressing Nefmut fused with HPV E7. In this way, we predicted that the expression of the Nefmut/E7 vector in muscle cells would result in a continuous source of endogenous (ie, produced by the inoculated host) engineered exosomes able to induce an E7-specific immune response. To assess this hypothesis, we first demonstrated that the injection of a Nefmut/green fluorescent protein-expressing vector led to the release of fluorescent exosomes, as detected in plasma of inoculated mice. Then, we observed that mice inoculated intramuscularly with a vector expressing Nefmut/E7 developed a CD8+ T-cell immune response against both Nef and E7. Conversely, no CD8+ T-cell responses were detected upon injection of vectors expressing either the wild-type Nef isoform of E7 alone, most likely a consequence of their inefficient exosome incorporation. The production of immunogenic exosomes in the DNA-injected mice was formally demonstrated by the E7-specific CD8+ T-cell immune response we detected in mice inoculated with exosomes isolated from plasma of mice inoculated with the Nefmut/E7 vector. Finally, we provide evidence that the injection of Nefmut/E7 DNA led to the generation of effective antigen-specific cytotoxic T lymphocytes whose activity was likely part of the potent, therapeutic antitumor effect we observed in mice implanted with TC-1 tumor cells. In summary, we established a novel method to generate immunogenic exosomes in vivo by the intramuscular inoculation of DNA vectors expressing the exosome-anchoring protein Nefmut and its derivatives.


Subject(s)
Antineoplastic Agents/pharmacology , Exosomes/immunology , Papillomavirus E7 Proteins/genetics , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigens , Antineoplastic Agents/immunology , CD8-Positive T-Lymphocytes/immunology , DNA/administration & dosage , Exosomes/genetics , Exosomes/metabolism , Female , Genes, nef , Genetic Engineering/methods , Genetic Vectors/immunology , Mice, Inbred C57BL , Papillomavirus E7 Proteins/pharmacology
17.
Arch Virol ; 162(9): 2565-2577, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28474225

ABSTRACT

Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4+ T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4+ T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4+ T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4+ T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4+ T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4+ T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CD4-Positive T-Lymphocytes/virology , Exosomes/physiology , HIV-1/physiology , Virus Activation/physiology , Adult , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/therapeutic use , Cell Line , Coculture Techniques , Drug Therapy, Combination , HIV Infections/virology , Humans , Male
18.
Curr Drug Targets ; 17(1): 46-53, 2016.
Article in English | MEDLINE | ID: mdl-26424397

ABSTRACT

Nef is an accessory protein expressed exclusively in primate lentiviruses. It is devoid of enzymatic activities while interacting with several cell proteins as an adaptor/scaffold protein. Intracellular functions of Nef largely account for many pathogenic effects observed in AIDS disease. Nef, despite lacking known secretory pathways, can be detected in plasma of HIV-1-infected patients at the concentration varing from 5 to 10 ng/ml. Remarkably, the levels of Nef in plasma of HIV patients do not correlate with viral load or number of CD4(+) T lymphocytes, and persist during antiretroviral therapy. Here, we review literature data describing how Nef can be transmitted from HIV-1- infected cells to bystander ones, and the effects of extracellular Nef in different cell types. Overall, large part of experimental evidences supports the idea that extracellular Nef plays a relevant role in AIDS pathogenesis. Hence, efforts focused on the identification of Nef-inhibiting drugs would be of relevance to establish new therapeutic approaches supporting current antiretroviral therapies.


Subject(s)
HIV Infections , HIV-1 , Paracrine Communication , nef Gene Products, Human Immunodeficiency Virus/metabolism , Anti-HIV Agents/pharmacology , Bystander Effect/physiology , Drug Discovery , Exosomes/metabolism , HIV Infections/drug therapy , HIV Infections/metabolism , HIV Infections/virology , HIV-1/drug effects , HIV-1/pathogenicity , HIV-1/physiology , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Paracrine Communication/drug effects , Paracrine Communication/physiology
19.
Retrovirology ; 12: 87, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26502902

ABSTRACT

BACKGROUND: Completion of HIV life cycle in CD4(+) T lymphocytes needs cell activation. We recently reported that treatment of resting CD4(+) T lymphocytes with exosomes produced by HIV-1 infected cells induces cell activation and susceptibility to HIV replication. Here, we present data regarding the effects of these exosomes on cells latently infected with HIV-1. RESULTS: HIV-1 latently infecting U937-derived U1 cells was activated upon challenge with exosomes purified from the supernatant of U937 cells chronically infected with HIV-1. This effect was no more detectable when exosomes from cells infected with HIV-1 strains either nef-deleted or expressing a functionally defective Nef were used, indicating that Nef is the viral determinant of exosome-induced HIV-1 activation. Treatment with either TAPI-2, i.e., a specific inhibitor of the pro-TNFα-processing ADAM17 enzyme, or anti-TNFα Abs abolished HIV-1 activation. Hence, similar to what previously demonstrated for the exosome-mediated activation of uninfected CD4(+) T lymphocytes, the Nef-ADAM17-TNFα axis is part of the mechanism of latent HIV-1 activation. It is noteworthy that these observations have been reproduced using: (1) primary CD4(+) T lymphocytes latently infected with HIV-1; (2) exosomes from both primary CD4(+) T lymphocytes and macrophages acutely infected with HIV-1; (3) co-cultures of HIV-1 acutely infected CD4(+) T lymphocytes and autologous lymphocytes latently infected with HIV-1, and (4) exosomes from cells expressing a defective HIV-1. CONCLUSIONS: Our results strongly suggest that latent HIV-1 can be activated by TNFα released by cells upon ingestion of exosomes released by infected cells, and that this effect depends on the activity of exosome-associated ADAM17. These pieces of evidence shed new light on the mechanism of HIV reactivation in latent reservoirs, and might also be relevant to design new therapeutic interventions focused on HIV eradication.


Subject(s)
Exosomes/physiology , HIV-1/physiology , Virus Activation , Virus Latency , ADAM Proteins/antagonists & inhibitors , ADAM17 Protein , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Coculture Techniques , Exosomes/chemistry , Exosomes/metabolism , Humans , Hydroxamic Acids/pharmacology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , U937 Cells , Virus Activation/genetics , Virus Latency/genetics , Virus Replication , nef Gene Products, Human Immunodeficiency Virus/genetics
20.
Virology ; 478: 27-38, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25705792

ABSTRACT

MicroRNA miR-146a and PLZF are reported as major players in the control of hematopoiesis, immune function and cancer. PLZF is described as a miR-146a repressor, whereas CXCR4 and TRAF6 were identified as miR-146a direct targets in different cell types. CXCR4 is a co-receptor of CD4 molecule that facilitates HIV-1 entry into T lymphocytes and myeloid cells, whereas TRAF6 is involved in immune response. Thus, the role of miR-146a in HIV-1 infection is currently being thoroughly investigated. In this study, we found that PLZF mediates suppression of miR-146a to control increases of CXCR4 and TRAF6 protein levels in human primary CD4(+) T lymphocytes. We show that miR-146a upregulation by AMD3100 treatment or PLZF silencing, decreases CXCR4 protein expression and prevents HIV-1 infection of leukemic monocytic cell line and CD4(+) T lymphocytes. Our findings improve the prospects of developing new therapeutic strategies to prevent HIV-1 entry via CXCR4 by using the PLZF/miR-146a axis.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Gene Expression Regulation , HIV-1/physiology , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/metabolism , Receptors, CXCR4/biosynthesis , Receptors, HIV/biosynthesis , Adult , Humans , Promyelocytic Leukemia Zinc Finger Protein , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...