Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(28): eado6406, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996012

ABSTRACT

5-Methylcytosine (5mC) is a widespread silencing mechanism that controls genomic parasites. In eukaryotes, 5mC has gained complex roles in gene regulation beyond parasite control, yet 5mC has also been lost in many lineages. The causes for 5mC retention and its genomic consequences are still poorly understood. Here, we show that the protist closely related to animals Amoebidium appalachense features both transposon and gene body methylation, a pattern reminiscent of invertebrates and plants. Unexpectedly, hypermethylated genomic regions in Amoebidium derive from viral insertions, including hundreds of endogenized giant viruses, contributing 14% of the proteome. Using a combination of inhibitors and genomic assays, we demonstrate that 5mC silences these giant virus insertions. Moreover, alternative Amoebidium isolates show polymorphic giant virus insertions, highlighting a dynamic process of infection, endogenization, and purging. Our results indicate that 5mC is critical for the controlled coexistence of newly acquired viral DNA into eukaryotic genomes, making Amoebidium a unique model to understand the hybrid origins of eukaryotic DNA.


Subject(s)
DNA Methylation , Giant Viruses , Animals , Giant Viruses/genetics , 5-Methylcytosine/metabolism , DNA Transposable Elements/genetics , DNA, Viral/genetics
2.
Nature ; 630(8015): 116-122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778110

ABSTRACT

Eukaryotes have evolved towards one of two extremes along a spectrum of strategies for remodelling the nuclear envelope during cell division: disassembling the nuclear envelope in an open mitosis or constructing an intranuclear spindle in a closed mitosis1,2. Both classes of mitotic remodelling involve key differences in the core division machinery but the evolutionary reasons for adopting a specific mechanism are unclear. Here we use an integrated comparative genomics and ultrastructural imaging approach to investigate mitotic strategies in Ichthyosporea, close relatives of animals and fungi. We show that species in this clade have diverged towards either a fungal-like closed mitosis or an animal-like open mitosis, probably to support distinct multinucleated or uninucleated states. Our results indicate that multinucleated life cycles favour the evolution of closed mitosis.


Subject(s)
Biological Evolution , Life Cycle Stages , Mesomycetozoea , Mitosis , Phylogeny , Animals , Genomics , Mesomycetozoea/genetics , Mesomycetozoea/physiology , Mesomycetozoea/cytology , Nuclear Envelope/metabolism , Nuclear Envelope/ultrastructure , Spindle Apparatus/metabolism , Fungi/classification
3.
Curr Biol ; 33(8): 1597-1605.e3, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36996815

ABSTRACT

The ratio of nuclear content to cytoplasmic volume (N/C ratio) is a key regulator driving the maternal-to-zygotic transition in most animal embryos. Altering this ratio often impacts zygotic genome activation and deregulates the timing and outcome of embryogenesis.1,2,3 Despite being ubiquitous across animals, little is known about when the N/C ratio evolved to control multicellular development. Such capacity either originated with the emergence of animal multicellularity or was co-opted from the mechanisms present in unicellular organisms.4 An effective strategy to tackle this question is to investigate the close relatives of animals exhibiting life cycles with transient multicellular stages.5 Among these are ichthyosporeans, a lineage of protists undergoing coenocytic development followed by cellularization and cell release.6,7,8 During cellularization, a transient multicellular stage resembling animal epithelia is generated, offering a unique opportunity to examine whether the N/C ratio regulates multicellular development. Here, we use time-lapse microscopy to characterize how the N/C ratio affects the life cycle of the best-studied ichthyosporean model, Sphaeroforma arctica. We uncover that the last stages of cellularization coincide with a significant increase in the N/C ratio. Increasing the N/C ratio by reducing the coenocytic volume accelerates cellularization, whereas decreasing the N/C ratio by lowering the nuclear content halts it. Moreover, centrifugation and pharmacological inhibitor experiments suggest that the N/C ratio is locally sensed at the cortex and relies on phosphatase activity. Altogether, our results show that the N/C ratio drives cellularization in S. arctica, suggesting that its capacity to control multicellular development predates animal emergence.


Subject(s)
Eukaryota , Mesomycetozoea , Animals , Eukaryota/genetics , Mesomycetozoea/genetics , Cell Nucleus , Cytosol , Genome
SELECTION OF CITATIONS
SEARCH DETAIL
...