Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(4): 1711-1723, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38087911

ABSTRACT

Magnetic oxygen-loaded nanodroplets (MOLNDs) are a promising class of nanomaterials dually sensitive to ultrasound and magnetic fields, which can be employed as nanovectors for drug delivery applications, particularly in the field of hypoxic tissue treatment. Previous investigations were primarily focused on the application of these hybrid systems for hyperthermia treatment, exploiting magnetic nanoparticles for heat generation and nanodroplets as carriers and ultrasound contrast agents for treatment progress monitoring. This work places its emphasis on the prospect of obtaining an oxygen delivery system that can be activated by both ultrasound and magnetic fields. To achieve this goal, Fe3O4 nanoparticles were employed to decorate and induce the magnetic vaporization of OLNDs, allowing oxygen release. We present an optimized method for preparing MOLNDs by decorating nanodroplets made of diverse fluorocarbon cores and polymeric coatings. Furthermore, we performed a series of characterizations for better understanding how magnetic decoration can influence the physicochemical properties of OLNDs. Our comprehensive analysis demonstrates the efficacy of magnetic stimulation in promoting oxygen release compared to conventional ultrasound-based methods. We emphasize the critical role of selecting the appropriate fluorocarbon core and polymeric coating to optimize the decoration process and enhance the oxygen release performance of MOLNDs.


Subject(s)
Fluorocarbons , Nanoparticles , Oxygen , Drug Delivery Systems , Ultrasonography , Nanoparticles/chemistry , Polymers , Fluorocarbons/chemistry , Magnetic Phenomena
2.
ACS Omega ; 8(2): 2143-2154, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687092

ABSTRACT

Magnetic hyperthermia is an oncological therapy that exploits magnetic nanoparticles activated by radiofrequency magnetic fields to produce a controlled temperature increase in a diseased tissue. The specific loss power (SLP) of magnetic nanoparticles or the capability to release heat can be improved using surface treatments, which can reduce agglomeration effects, thus impacting on local magnetostatic interactions. In this work, Fe3O4 nanoparticles are synthesized via a coprecipitation reaction and fully characterized in terms of structural, morphological, dimensional, magnetic, and hyperthermia properties (under the Hergt-Dutz limit). Different types of surface coatings are tested, comparing their impact on the heating efficacy and colloidal stability, resulting that sodium citrate leads to a doubling of the SLP with a substantial improvement in dispersion and stability in solution over time; an SLP value of around 170 W/g is obtained in this case for a 100 kHz and 48 kA/m magnetic field.

3.
Article in English | MEDLINE | ID: mdl-19162760

ABSTRACT

Magnetic Micro-Machines (MMM) have been proposed as effective tools for minimally invasive surgery. We propose an innovative and low cost MMM manufacturing process based on casting of a mixture of SmCo powders and acrylic resin into silicone moulds. After developing a MMM prototype, we tested its swimming ability by using different siliconic oils of known kinematic viscosity. The propulsion efficiency, given by the velocity and frequency ratio, has been found comparable with other MMM reported in the literature.


Subject(s)
Micro-Electrical-Mechanical Systems/instrumentation , Minimally Invasive Surgical Procedures/instrumentation , Equipment Design , Equipment Failure Analysis , Minimally Invasive Surgical Procedures/methods , Reproducibility of Results , Rotation , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...