Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(9): 5241-5256, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38647045

ABSTRACT

CRISPR-Cas systems have widely been adopted as genome editing tools, with two frequently employed Cas nucleases being SpyCas9 and LbCas12a. Although both nucleases use RNA guides to find and cleave target DNA sites, the two enzymes differ in terms of protospacer-adjacent motif (PAM) requirements, guide architecture and cleavage mechanism. In the last years, rational engineering led to the creation of PAM-relaxed variants SpRYCas9 and impLbCas12a to broaden the targetable DNA space. By employing their catalytically inactive variants (dCas9/dCas12a), we quantified how the protein-specific characteristics impact the target search process. To allow quantification, we fused these nucleases to the photoactivatable fluorescent protein PAmCherry2.1 and performed single-particle tracking in cells of Escherichia coli. From our tracking analysis, we derived kinetic parameters for each nuclease with a non-targeting RNA guide, strongly suggesting that interrogation of DNA by LbdCas12a variants proceeds faster than that of SpydCas9. In the presence of a targeting RNA guide, both simulations and imaging of cells confirmed that LbdCas12a variants are faster and more efficient in finding a specific target site. Our work demonstrates the trade-off of relaxing PAM requirements in SpydCas9 and LbdCas12a using a powerful framework, which can be applied to other nucleases to quantify their DNA target search.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Associated Proteins , CRISPR-Cas Systems , Gene Editing , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , DNA/metabolism , DNA/genetics , DNA/chemistry , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Editing/methods , Kinetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism
2.
Nat Commun ; 12(1): 4531, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34312383

ABSTRACT

Recent developments in synthetic biology may bring the bottom-up generation of a synthetic cell within reach. A key feature of a living synthetic cell is a functional cell cycle, in which DNA replication and segregation as well as cell growth and division are well integrated. Here, we describe different approaches to recreate these processes in a synthetic cell, based on natural systems and/or synthetic alternatives. Although some individual machineries have recently been established, their integration and control in a synthetic cell cycle remain to be addressed. In this Perspective, we discuss potential paths towards an integrated synthetic cell cycle.


Subject(s)
Artificial Cells , Biological Mimicry/genetics , Cell Cycle/genetics , DNA Replication/genetics , Models, Genetic , Synthetic Biology/methods , Bacteriophages/genetics , Escherichia coli/genetics , Protein Biosynthesis/genetics , Synthetic Biology/trends , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...