Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 17: 1213385, 2023.
Article in English | MEDLINE | ID: mdl-37584030

ABSTRACT

Introduction: Compared to judokas (JU) and non-athletes (NA), horseback riders (HR) may develop specific changes in their sensory control of balance. Methods: Thirty-four international-level JU, twenty-seven international-level HR and twenty-one NA participated. Participants stood upright on a plateform (static condition) or on a seesaw device with an instability along the mediolateral (ML) or the anteroposterior (AP) direction (dynamic conditions). These conditions were carried out with eyes opened (EO) or closed (EC), and with (wF) or without a foam (nF). Experimental variables included conventional (linear), non-linear center-of-pressure (COP) parameters, Romberg Quotient (RQ) and Plantar Quotient (PQ). Results: Group effects. COP Surface (COPS) and standard deviation of COP along AP (SDY) were lower in HR than in JU in Static. SD Y was lower in HR than in JU in Dynamic AP. COP velocity (COPV) was lower in both HR and JU than in NA in Static and Dynamic. Sample entropy along AP and ML (SampEnY and SampEnX) were higher in HR than in JU in Static. SampEnY was higher in HR than in JU in Dynamic ML. Sensory effects. In EC, COPV was lower in JU than in NA in Dynamic AP, and lower in JU than in both HR and NA in Dynamic ML. In EO, COPV was lower in both JU and HR than in NA in Dynamic ML. RQ applied to COPS was lower in JU than in both HR and NA in Dynamic AP, and lower in JU than in HR in Dynamic ML. RQ applied to COPV was lower in JU than in both HR and NA in Static and Dynamic. PQ applied to COPS was higher in JU than in both HR and NA in Dynamic ML. Conclusion: Results showed that the effects of sport expertise on postural control could only be revealed with specific COP variables and were directionally oriented and sport-dependant. HR seem to rely more on vision than JU, thus revealing that the contribution of the sensory inputs to balance control is also sport-dependent. Results open up new knowledge on the specificity of sport practice on multisensory balance information during upright posture.

2.
PLoS One ; 14(2): e0211834, 2019.
Article in English | MEDLINE | ID: mdl-30721260

ABSTRACT

Horseback riding requires the ability to adapt to changes in balance conditions, to maintain equilibrium on the horse and to prevent falls. Postural adaptation involves specific sensorimotor processes integrating visual information and somesthesic information. The objective of this study was to examine this multisensorial integration on postural control, especially the use of visual and plantar information in static (stable) and dynamic (unstable) postures, among a group of expert horse rider women (n = 10) and a group of non-athlete women (n = 12). Postural control was evaluated through the center of pressure measured with a force platform on stable and unstable supports, with the eyes open and the eyes closed, and with the presence of foam on the support or not. Results showed that expert horse rider women had a better postural stability with unstable support in the mediolateral axis compared to non-athletes. Moreover, on the anteroposterior axis, expert horse riders were less visual dependent and more stable in the presence of foam. Results suggested that horseback riding could help developing particular proprioceptive abilities on standing posture as well as better postural muscle tone during particular bipodal dynamic perturbations. These outcomes provide new insights into horseback riding assets and methodological clues to assess the impact of sport practice.


Subject(s)
Athletes , Horses , Postural Balance/physiology , Posture/physiology , Proprioception/physiology , Adolescent , Adult , Animals , Female , Humans , Male
3.
Front Hum Neurosci ; 11: 11, 2017.
Article in English | MEDLINE | ID: mdl-28194100

ABSTRACT

Maintaining equilibrium while riding a horse is a challenging task that involves complex sensorimotor processes. We evaluated the relative contribution of visual information (static or dynamic) to horseback riders' postural stability (measured from the variability of segment position in space) and the coordination modes they adopted to regulate balance according to their level of expertise. Riders' perceptual typologies and their possible relation to postural stability were also assessed. Our main assumption was that the contribution of visual information to postural control would be reduced among expert riders in favor of vestibular and somesthetic reliance. Twelve Professional riders and 13 Club riders rode an equestrian simulator at a gallop under four visual conditions: (1) with the projection of a simulated scene reproducing what a rider sees in the real context of a ride in an outdoor arena, (2) under stroboscopic illumination, preventing access to dynamic visual cues, (3) in normal lighting but without the projected scene (i.e., without the visual consequences of displacement) and (4) with no visual cues. The variability of the position of the head, upper trunk and lower trunk was measured along the anteroposterior (AP), mediolateral (ML), and vertical (V) axes. We computed discrete relative phase to assess the coordination between pairs of segments in the anteroposterior axis. Visual field dependence-independence was evaluated using the Rod and Frame Test (RFT). The results showed that the Professional riders exhibited greater overall postural stability than the Club riders, revealed mainly in the AP axis. In particular, head variability was lower in the Professional riders than in the Club riders in visually altered conditions, suggesting a greater ability to use vestibular and somesthetic information according to task constraints with expertise. In accordance with this result, RFT perceptual scores revealed that the Professional riders were less dependent on the visual field than were the Club riders. Finally, the Professional riders exhibited specific coordination modes that, unlike the Club riders, departed from pure in-phase and anti-phase patterns and depended on visual conditions. The present findings provide evidence of major differences in the sensorimotor processes contributing to postural control with expertise in horseback riding.

SELECTION OF CITATIONS
SEARCH DETAIL
...