Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4028, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37419913

ABSTRACT

The absorption of airborne sound is still a subject of active research, and even more since the emergence of acoustic metamaterials. Although being subwavelength, the screen barriers developed so far cannot absorb more than 50% of an incident wave at very low frequencies (<100 Hz). Here, we explore the design of a subwavelength and broadband absorbing screen based on thermoacoustic energy conversion. The system consists of a porous layer kept at room temperature on one side while the other side is cooled down to a very low temperature using liquid nitrogen. At the absorbing screen, the sound wave experiences both a pressure jump caused by viscous drag, and a velocity jump caused by thermoacoustic energy conversion breaking reciprocity and allowing a one-sided absorption up to 95 % even in the infrasound regime. By overcoming the ordinary low frequency absorption limit, thermoacoustic effects open the door to the design of innovative devices.


Subject(s)
Acoustics , Sound , Temperature , Porosity , Cold Temperature
2.
J Acoust Soc Am ; 152(5): 2804, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36456285

ABSTRACT

The design of thermoacoustic coolers involves an adequate modeling of the thermoacoustic core's performance, which requires, in particular, a precise knowledge of their thermo-physical properties. Materials such as wire mesh stacks, foams, or compressed fibrous media are hard to describe, and their thermo-physical properties are rarely well enough quantified. Moreover, the classical linear thermoacoustic theory is not sufficient to accurately describe the performance of these materials. This paper deals with the experimental performance characterization of various materials for thermoacoustic heat pumping. A dedicated experimental test-bench has been specially developed, which is composed of two loudspeakers placed at opposite ends of a waveguide containing the porous material and a feedback loop to control the acoustic field in the porous material. Its originality is attributable to the possibility of identifying the optimal acoustic field, specific to each material, that maximizes the temperature difference at the ends of the material. Moreover, a specific protocol is implemented to access and compare the thermoacoustic heat flux through various materials at these optimal acoustic fields. Comparison of the experimental and theoretical results shows a reasonable agreement.

3.
J Acoust Soc Am ; 149(3): 1913, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33765816

ABSTRACT

This paper deals with the experimental study of an acoustic Parity-Time (PT) symmetric system based on the thermoacoustic amplification process. Such a system is presented and consists of two acoustic units connected through side branches to a waveguide. One unit contains a thermoacoustic core that provides an acoustic gain which balances the thermal and viscous losses taking place in the second unit. Two control parameters are set to adjust the impedance of the two units and thereby achieve the PT-symmetry condition. The results show that a good balance between gain and loss is achieved within a frequency range from 45 Hz to 60 Hz. The spontaneous PT-symmetry breaking and the existence of exceptional points, which are characteristic of the behavior of PT-symmetric systems, are explored in this frequency range. Moreover, the distance between the two units is shown to be a control parameter to slightly shift the frequency at which the exceptional points occur.

SELECTION OF CITATIONS
SEARCH DETAIL
...