Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Physiol Plant ; 176(3): e14326, 2024.
Article in English | MEDLINE | ID: mdl-38708565

ABSTRACT

Plants face a trade-off between hydraulic safety and growth, leading to a range of water-use strategies in different species. However, little is known about such strategies in tropical trees and whether different water-use traits can acclimate to warming. We studied five water-use traits in 20 tropical tree species grown at three different altitudes in Rwanda (RwandaTREE): stomatal conductance (gs), leaf minimum conductance (gmin), plant hydraulic conductance (Kplant), leaf osmotic potential (ψo) and net defoliation during drought. We also explored the links between these traits and growth and mortality data. Late successional (LS) species had low Kplant, gs and gmin and, thus, low water loss, while low ψo helped improve leaf water status during drought. Early successional (ES) species, on the contrary, used more water during both moist and dry conditions and exhibited pronounced drought defoliation. The ES strategy was associated with lower mortality and more pronounced growth enhancement at the warmer sites compared to LS species. While Kplant and gmin showed downward acclimation in warmer climates, ψo did not acclimate and gs measured at prevailing temperature did not change. Due to distinctly different water use strategies between successional groups, ES species may be better equipped for a warmer climate as long as defoliation can bridge drought periods.


Subject(s)
Climate Change , Droughts , Plant Leaves , Trees , Tropical Climate , Water , Water/metabolism , Water/physiology , Trees/physiology , Trees/growth & development , Plant Leaves/physiology , Plant Stomata/physiology , Acclimatization/physiology , Plant Transpiration/physiology , Temperature
2.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38712823

ABSTRACT

To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Animals , Humans , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/therapeutic use , Spike Glycoprotein, Coronavirus/immunology
3.
Commun Biol ; 7(1): 77, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200184

ABSTRACT

CCDC88B is a risk factor for several chronic inflammatory diseases in humans and its inactivation causes a migratory defect in DCs in mice. CCDC88B belongs to a family of cytoskeleton-associated scaffold proteins that feature protein:protein interaction domains. Here, we identified the Rho/Rac Guanine Nucleotide Exchange Factor 2 (ARHGEF2) and the RAS Protein Activator Like 3 (RASAL3) as CCDC88B physical and functional interactors. Mice defective in Arhgef2 or Rasal3 show dampened neuroinflammation, and display altered cellular response and susceptibility to colitis; ARHGEF2 maps to a human Chromosome 1 locus associated with susceptibility to IBD. Arhgef2 and Rasal3 mutant DCs show altered migration and motility in vitro, causing either reduced (Arhgef2) or enhanced (Rasal3) migratory properties. The CCDC88B/RASAL3/ARHGEF2 complex appears to regulate DCs migration by modulating activation of RHOA, with ARHGEF2 and RASAL3 acting in opposite regulatory fashions, providing a molecular mechanism for the involvement of these proteins in DCs immune functions.


Subject(s)
Colitis , Neuroinflammatory Diseases , Animals , Humans , Mice , Cell Physiological Phenomena , Colitis/genetics , Cytoskeleton , Dendritic Cells , Rho Guanine Nucleotide Exchange Factors/genetics
4.
bioRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37503298

ABSTRACT

To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast, Fridy et al. 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

5.
Public Health Res Pract ; 33(4)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38052197

ABSTRACT

Public spaces influence the health and safety of lesbian, gay, bisexual, trans, queer, intersex, asexual and other sexual and gender-diverse (LGBTQIA+) communities. However, there is minimal research to demonstrate the link between inclusive urban policy and planning and the wellbeing of LGBTQIA+ communities. Consequently, in this perspective, we reflect on our project, which offered foundational work for understanding LGBTQIA+ experiences of public spaces in Australia's three most populous urban centres - Sydney, Melbourne and Brisbane. Our desk-based research approach provides a five-point evaluative framework to assess how local government areas (LGAs) accommodate LGBTQIA+ communities. We then present a recommendations framework for creating more inclusive local areas and public spaces. We propose that 'usualising' queerness in public spaces can lead to increased health and wellbeing for LGBTQIA+ communities.


Subject(s)
Sexual and Gender Minorities , Female , Humans , Policy
6.
Molecules ; 28(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36838742

ABSTRACT

In this work, a NIR emitting dye, p-toluenesulfonate (IR-813) was explored as a model precursor to develop red emissive carbon dots (813-CD) with solvatochromic behavior with a red-shift observed with increasing solvent polarity. The 813-CDs produced had emission peaks at 610 and 698 nm, respectively, in water with blue shifts of emission as solvent polarity decreased. Subsequently, 813-CD was synthesized with increasing nitrogen content with polyethyleneimine (PEI) to elucidate the change in band gap energy. With increased nitrogen content, the CDs produced emissions as far as 776 nm. Additionally, a CD nanocomposite polyvinylpyrrolidone (PVP) film was synthesized to assess the phenomenon of solid-state fluorescence. Furthermore, the CDs were found to have electrochemical properties to be used as an additive doping agent for PVP film coatings.


Subject(s)
Carbon , Quantum Dots , Solvents/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Nitrogen/chemistry
7.
Nanoscale ; 15(9): 4448-4456, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36752225

ABSTRACT

A two-component stapling strategy is used to covalently tether a new class of water-soluble supramolecular polymers built from bay-functionalized perylene bisimide (PBI) units. By leveraging a novel combined strategy where excitonic coupling and fluorescence data are exploited as spectroscopic reporters, structural design principles are established to form light-harvesting superstructures whose ground-state electronic properties are not sensitive to solvation environments. Moreover, we interrogate the structural properties of stapled superstructures by capitalizing on the drastic changes in fluorescence quantum yields against parent supramolecular assemblies. In essence, our work shows that the combination of excitonic coupling measurements and photoluminescence experiments delineates a more accurate understanding of the design principles required to limit the degree of structural defects and magnify short- and long-range electronic couplings between redox-active units in this new class of solvated nanoscale objects. These results highlight that the fragile conformation of non-covalent assemblies, which are regulated by weak secondary interactions, can be preserved by post-assembly modification of preformed supramolecular polymers. These synthetic and spectroscopic principles can in turn be codified as experimental handles to parameterize the optoelectronic properties of light-harvesting nanoscale objects.

8.
J Colloid Interface Sci ; 637: 193-206, 2023 May.
Article in English | MEDLINE | ID: mdl-36701865

ABSTRACT

Nucleus targeting is tremendously important in cancer therapy. Cationic carbon dots (CCDs) are potential nanoparticles which might enter cells and penetrate nuclear membranes. Although some CCDs have been investigated in nucleus targeting and applied in nuclear imaging, the CCDs derived from drugs, that are able to target the nucleus, bind with DNA and inhibit the growth of cancer cells have not been reported. In this project, 1, 2, 4, 5-benzenetetramine (Y15, a focal adhesion kinase inhibitor) derived cationic carbon dots (Y15-CDs) were prepared via a hydrothermal approach utilizing Y15, folic acid and 1,2-ethylenediamine as precursors. Based on the structural, optical, and morphologic characterizations, Y15-CDs possess rich amine groups and nitrogen in structure, an excitation-dependent photoluminescence emission, and a small particle size of 2 to 4 nm. The DNA binding experiments conducted through agarose gel electrophoresis, UV-vis absorption, fluorescence emission, and circular dichroism spectroscopies, prove that Y15-CDs might bind with DNA via electrostatic interactions and partially intercalative binding modes. In addition, the cell imaging and cytotoxicity studies in human foreskin fibroblasts (HFF), prostate cancer (PC3) and osteosarcoma cells (U2OS) indicate the nucleus targeting and anticancer abilities of Y15-CDs. Most interestingly, Y15-CDs exhibit a higher cytotoxicity to cancer cells (PC3 and U2OS) than to normal cells (HFF), inferring that Y15-CDs might be potentially applied in cancer therapy.


Subject(s)
Nanoparticles , Neoplasms , Quantum Dots , Male , Humans , Quantum Dots/chemistry , Carbon/pharmacology , Carbon/chemistry , Nanoparticles/chemistry , Spectrometry, Fluorescence , DNA/metabolism , Fluorescent Dyes/chemistry
9.
Nutrients ; 14(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558497

ABSTRACT

Although arachidonic acid (ARA) is the precursor of the majority of eicosanoids, its influence as a food component on health is not well known. Therefore, we investigated its impact on the gut microbiota and gut-brain axis. Groups of male BALB/c mice were fed either a standard diet containing 5% lipids (Std-ARA) or 15%-lipid diets without ARA (HL-ARA) or with 1% ARA (HL + ARA) for 9 weeks. Fatty acid profiles of all three diets were the same. The HL-ARA diet favored the growth of Bifidobacterium pseudolongum contrary to the HL + ARA diet that favored the pro-inflammatory Escherichia-Shigella genus in fecal microbiota. Dietary ARA intake induced 4- and 15-fold colic overexpression of the pro-inflammatory markers IL-1ß and CD40, respectively, without affecting those of TNFα and adiponectin. In the brain, dietary ARA intake led to moderate overexpression of GFAP in the hippocampus and cortex. Both the hyperlipidic diets reduced IL-6 and IL-12 in the brain. For the first time, it was shown that dietary ARA altered the gut microbiota, led to low-grade colic inflammation, and induced astrogliosis in the brain. Further work is necessary to determine the involved mechanisms.


Subject(s)
Colic , Gastrointestinal Microbiome , Mice , Animals , Male , Arachidonic Acid/pharmacology , Brain-Gut Axis , Mice, Inbred BALB C , Diet
10.
J Cell Biol ; 221(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36305789

ABSTRACT

Viruses co-opt host proteins to carry out their lifecycle. Repurposed host proteins may thus become functionally compromised; a situation analogous to a loss-of-function mutation. We term such host proteins as viral-induced hypomorphs. Cells bearing cancer driver loss-of-function mutations have successfully been targeted with drugs perturbing proteins encoded by the synthetic lethal (SL) partners of cancer-specific mutations. Similarly, SL interactions of viral-induced hypomorphs can potentially be targeted as host-based antiviral therapeutics. Here, we use GBF1, which supports the infection of many RNA viruses, as a proof-of-concept. GBF1 becomes a hypomorph upon interaction with the poliovirus protein 3A. Screening for SL partners of GBF1 revealed ARF1 as the top hit, disruption of which selectively killed cells that synthesize 3A alone or in the context of a poliovirus replicon. Thus, viral protein interactions can induce hypomorphs that render host cells selectively vulnerable to perturbations that leave uninfected cells otherwise unscathed. Exploiting viral-induced vulnerabilities could lead to broad-spectrum antivirals for many viruses, including SARS-CoV-2.


Subject(s)
Guanine Nucleotide Exchange Factors , Poliovirus , Viral Core Proteins , Humans , Guanine Nucleotide Exchange Factors/metabolism , Synthetic Lethal Mutations , Virus Replication , Gene Expression Regulation, Viral , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Host-Pathogen Interactions
11.
Front Cell Infect Microbiol ; 12: 979996, 2022.
Article in English | MEDLINE | ID: mdl-36171757

ABSTRACT

The mechanistic target of rapamycin (mTOR) functions in two distinct complexes: mTORC1, and mTORC2. mTORC1 has been implicated in the pathogenesis of flaviviruses including dengue, where it contributes to the establishment of a pro-viral autophagic state. Activation of mTORC2 occurs upon infection with some viruses, but its functional role in viral pathogenesis remains poorly understood. In this study, we explore the consequences of a physical protein-protein interaction between dengue non-structural protein 5 (NS5) and host cell mTOR proteins during infection. Using shRNA to differentially target mTORC1 and mTORC2 complexes, we show that mTORC2 is required for optimal dengue replication. Furthermore, we show that mTORC2 is activated during viral replication, and that mTORC2 counteracts virus-induced apoptosis, promoting the survival of infected cells. This work reveals a novel mechanism by which the dengue flavivirus can promote cell survival to maximize viral replication.


Subject(s)
Dengue , Multiprotein Complexes , Apoptosis , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , RNA, Small Interfering , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Virus Replication
12.
Langmuir ; 38(14): 4266-4275, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35353503

ABSTRACT

The confinement of π-conjugated chromophores on silicon (Si) electrode surfaces is a powerful approach to engineer electroresponsive monolayers relevant to microelectronics, electrocatalysis, and information storage and processing. While common strategies to functionalize Si interfaces exploit molecularly dissolved building blocks, only a handful number of studies have leveraged the structure-function relationships of π-aggregates to tune the electronic structures of hybrid monolayers at Si interfaces. Herein, we show that the semiconducting properties of n-type monolayers constructed on Si electrodes are intimately correlated to the initial aggregation state of π-conjugated chromophore precursors derived from bay-substituted perylene bisimide (PBI) units. Specifically, our study unravels that for n-type monolayers engineered using PBI π-aggregates, the cathodic reduction potentials required to inject negative charge carriers into the conduction bands can be stabilized by 295 mV through reversible switching of the maximum anodic potential (MAP) that is applied during the oxidative cycles (+0.5 or +1.5 V vs Ag/AgCl). This redox-assisted stabilization effect is not observed with n-type monolayers derived from molecularly dissolved PBI cores and monolayers featuring a low surface density of the redox-active probes. These findings unequivocally point to the crucial role played by PBI π-aggregates in modulating the conduction band energies of n-type monolayers where a high MAP of +1.5 V enables the formation of electronic trap states that facilitate electron injection when sweeping back to cathodic potentials. Because the structure-function relationships of PBI π-aggregates are shown to modulate the semiconducting properties of hybrid n-type monolayers constructed at Si interfaces, our results hold promising opportunities to develop redox-switchable monolayers for engineering nonvolatile electronic memory devices.

13.
Tree Physiol ; 42(1): 114-129, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34302178

ABSTRACT

Climate models predict an increase in the severity and the frequency of droughts. Tropical forests are among the ecosystems that could be highly impacted by these droughts. Here, we explore how hydraulic and photochemical processes respond to drought stress and re-watering. We conducted a pot experiment on saplings of five tree species. Before the onset of drought, we measured a set of hydraulic traits, including minimum leaf conductance, leaf embolism resistance and turgor loss point. During drought stress, we monitored traits linked to leaf hydraulic functioning (leaf water potential (ψmd) and stomatal conductance (gs)) and traits linked to leaf photochemical functioning (maximum quantum yield of photosystem II (Fv/Fm) and maximum electron transport rate (ETRmax)) at different wilting stages. After re-watering, the same traits were measured after 3, 7 and 14 days. Hydraulic trait values decreased faster than photochemical trait values. After re-watering, the values of the four traits recovered at different rates. Fv/Fm recovered very fast close to their initial values only 3 days after re-watering. This was followed by ETRmax, Ψmd and gs. Finally, we show that species with large stomatal and leaf safety margin and low πtlp are not strongly impacted by drought, whereas they have a low recovery on photochemical efficiency. These results demonstrate that πtlp, stomatal and leaf safety margin are a good indicators of plant responses to drought stress and also to recovery for photochemical efficiency.


Subject(s)
Droughts , Trees , Ecosystem , Photochemical Processes , Plant Leaves/physiology , Trees/physiology , Water/physiology
14.
Elife ; 102021 12 07.
Article in English | MEDLINE | ID: mdl-34874007

ABSTRACT

The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , Camelids, New World/immunology , Epitopes/genetics , Epitopes/immunology , HEK293 Cells , Humans , Male , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
15.
BMC Vet Res ; 17(1): 243, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34256761

ABSTRACT

BACKGROUND: Infective lesions of the jaws and adjacent tissues (lumpy jaw disease, LJD) have been recognized as one major cause of death of captive macropods. Fusobacterium necrophorum and Actinomyces species serve as the main source of LJD in kangaroos and wallabies. Currently, little is reported about LJD or similar diseases in opossums. CASE PRESENTATION: Here we report a case of actinomycosis resembling the entity lumpy jaw disease in a gray four-eyed opossum, caused by a novel species of Schaalia. A 2.8 year old male Philander opossum was presented with unilateral swelling of the right mandible. After an initial treatment with marbofloxacin, the opossum was found dead the following day and the carcass was submitted for necropsy. Postmortem examination revealed severe mandibular skin and underlying soft tissue infection with subsequent septicemia as the cause of death. Histological examination demonstrated Splendore-Hoeppli phenomenon, typically seen in classical cases of actinomycosis. Bacteriology of liver and mandibular mass yielded a previously undescribed species of Schaalia, whose 16 S rRNA gene sequence was 97.0 % identical to Schaalia canis. Whole genome sequencing of the opossum isolate and calculation of average nucleotide identity confirmed a novel species of Schaalia, for which no whole genome sequence is yet available. CONCLUSIONS: The herewith reported Schaalia infection in the gray four-eyed opossum resembling classical actinomycosis gives a novel insight into new exotic animal bacterial diseases. Schaalia species may belong to the normal oral microbiome, as in macropods, and may serve as a contributor to opportunistic infections. Due to the lack of current literature, more insights and improved knowledge about Schaalia spp. and their pathogenicity will be useful to choose appropriate therapy regimens and improve the treatment success rate and outcome in exotic and endangered species.


Subject(s)
Actinomycetaceae/isolation & purification , Actinomycosis/microbiology , Actinomycosis/veterinary , Opossums/microbiology , Actinomycetaceae/genetics , Animals , Jaw Diseases/microbiology , Jaw Diseases/veterinary , Male , Whole Genome Sequencing
16.
Ecol Evol ; 11(14): 9217-9226, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306618

ABSTRACT

Determining herbage intake is pivotal for studies on grazing ecology. Direct observation of animals allows describing the interactions of animals with the pastoral environment along the complex grazing process. The objectives of the study were to evaluate the reliability of the continuous bite monitoring (CBM) method in determining herbage intake in grazing sheep compared to the standard double-weighing technique method during 45-min feeding bouts; evaluate the degree of agreement between the two techniques; and to test the effect of different potential sources of variation on the reliability of the CBM. The CBM method has been used to describe the intake behavior of grazing herbivores. In this study, we evaluated a new approach to this method, that is, whether it is a good proxy for determining the intake of grazing animals. Three experiments with grazing sheep were carried out in which we tested for different sources of variations, such as the number of observers, level of detail of bite coding grid, forage species, forage allowance, sward surface height heterogeneity, experiment site, and animal weight, to determine the short-term intake rate (45 min). Observer (Pexp1  = 0.018, Pexp2  = 0.078, and Pexp3  = 0.006), sward surface height (Pexp2  < 0.001), total number of bites observed per grazing session (Pexp2  < 0.001 and Pexp3  < 0.001), and sward depletion (Pexp3  < 0.001) were found to affect the absolute error of intake estimation. The results showed a high correlation and agreement between the two methods in the three experiments, although intake was overestimation by CBM on experiments 2 and 3 (181.38 and 214.24 units, respectively). This outcome indicates the potential of CBM to determining forage intake with the benefit of a greater level of detail on foraging patterns and components of the diet. Furthermore, direct observation is not invasive nor disrupts natural animal behavior.

17.
Sci Total Environ ; 780: 146582, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34030331

ABSTRACT

We tested the hypothesis that improving sward structure through adjustments in forage allowance results in greater forage intake and live weight (LW) gains by beef cattle and lower CH4 emissions per unit LW gain and unit area in a native grassland ecosystem of the Pampa biome. The experiment was carried out during 2012 and 2013 in southern Brazil. The experimental design was a randomized complete block with two replicates. Treatments consisted of five contrasting forage allowances of a native grassland managed under continuous stocking: 4, 8, 8-12, 12, and 16 kg of dry matter (DM) 100 kg LW-1 day-1 (or % LW). The 8-12% LW treatment had a variable forage allowance of 8% LW in spring and 12% LW in summer, autumn, and winter. Forage allowance was controlled by changes in stocking rate (kg LW ha-1). Average daily gain (kg LW day-1) was high for forage allowances of 12 and 16% LW but decreased at 8%, reaching the lowest value at 4% LW treatment (p < 0.001). Live weight gain ha-1 year-1 was the greatest at forage allowance of 8-12% LW (p < 0.001). Forage DM intake peaked at a forage allowance of 12% LW (p = 0.005). Individual CH4 emissions remained constant around 150 g day-1 for the two highest forage allowances and decreased to 118 and 107 g day-1 under forage allowances of 8 and 4% LW, respectively (p = 0.002). Emissions per unit LW gain and unit area were driven by animal productivity changes and decreased with increasing forage allowance (p = 0.001 and p = 0.040, respectively). We propose that the combination of 8% LW forage allowance during spring and 12% LW during the rest of the year should be targeted to best balance animal production and environmental impact in the Pampa biome.


Subject(s)
Animal Feed , Methane , Animal Feed/analysis , Animals , Brazil , Cattle , Diet , Ecosystem , Grassland
18.
bioRxiv ; 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33851164

ABSTRACT

Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.

19.
ACS Appl Mater Interfaces ; 13(3): 4665-4675, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33443396

ABSTRACT

The functionalization of silicon electrodes with π-conjugated chromophores opens new avenues to engineer hybrid semiconducting interfaces relevant to information storage and processing. Notably, molecularly dissolved π-conjugated units, such as ferrocene derivatives, are traditionally exploited as building blocks to construct well-defined interfaces that establish electrochemically addressable platforms with which to investigate electron transfer properties and charge storage capabilities. In contrast, planar π-conjugated building blocks such as naphthalene diimide (NDI) cores enable the formation of solvated aggregates equipped with emergent electronic structures not manifested by the parent, molecularly dissolved building blocks. To interrogate the extent to which the aggregated states of π-conjugated chromophores can be leveraged to regulate the n-type semiconducting properties of functionalized electrodes, we have devised an amphiphilic rylene core (NDI) that demonstrates a non-negligible degree of aggregation in an aqueous medium. Characterization of the electronic structures of the NDI-derived aggregates using a combination of electrochemistry, reductive titration experiments, and spectroelectrochemistry unveils the existence of π-anion stacks, the formation of which is contingent on the initial concentration of NDI building blocks. We show that grafting n-doped NDI aggregates on silicon electrode precursors equipped with a high density of anchoring groups by means of "click" reaction enables the formation of the hybrid Si-NDI electrode (Si-NDI-15@1) that facilitates electron injection by more than 400 mV when compared to Si interfaces constructed from molecularly dissolved NDI units. Furthermore, the engineering of a Si precursor surface characterized by a low density of anchoring groups provides additional proof to highlight that the potentiometric properties recorded for Si-NDI-15@1 originate from NDI units, evidencing a non-negligible degree of aggregation. The present work delivers tools to manipulate the potentiometric properties of functionalized electrodes by leveraging on the electronic structures of aggregated, π-conjugated precursors.

20.
Phys Chem Chem Phys ; 23(4): 2703-2714, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33491689

ABSTRACT

The development of supramolecular tools to modulate the excitonic properties of non-covalent assemblies paves the way to engineer new classes of semicondcuting materials relevant to flexible electronics. While controlling the assembly pathways of organic chromophores enables the formation of J-like and H-like aggregates, strategies to tailor the excitonic properties of pre-assembled aggregates through post-modification are scarce. In the present contribution, we combine supramolecular chemistry with redox chemistry to modulate the excitonic properties and solid-state morphologies of aggregates built from stacks of water-soluble perylene diimide building blocks. The n-doping of initially formed aggregates in an aqueous medium is shown to produce π-anion stacks for which spectroscopic properties unveil a non-negligible degree of electron-electron interactions. Oxidation of the n-doped intermediates produces metastable aggregates where free exciton bandwidths (ExBW) increase as a function of time. Kinetic data analysis reveals that the dynamic increase of free exciton bandwidth is associated with the formation of superstructures constructed by means of a nucleation-growth mechanism. By designing different redox-assisted assembly pathways, we highlight that the sacrificial electron donor plays a non-innocent role in regulating the structure-function properties of the final superstructures. Furthermore, supramolecular architectures formed via a nucleation-growth mechanism evolve into ribbon-like and fiber-like materials in the solid-state, as characterized by SEM and HRTEM. Through a combination of ground-state electronic absorption spectroscopy, electrochemistry, spectroelectrochemistry, microscopy, and modeling, we show that redox-assisted assembly provides a means to reprogram the structure-function properties of pre-assembled aggregates.

SELECTION OF CITATIONS
SEARCH DETAIL
...