Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 97(10)2021 10 07.
Article in English | MEDLINE | ID: mdl-34601593

ABSTRACT

European apple canker, caused by Neonectria ditissima, is a severe disease of apple. Achieving effective control is difficult with the currently available pesticides. Specific apple endophytes associated with cultivars may partially contribute to the cultivar response to the pathogen and thus could be used for disease management. We sought to determine whether the overall endophyte community differed among cultivars differing in their susceptibility to N. ditissima and to identify specific microbial groups associated with the susceptibility. Using Illumina MiSeq meta-barcoding, we profiled apple tree endophytes in 16 scion-rootstock combinations at two locations and quantified the relative contribution of scion, rootstock and location to the observed variability in the endophyte communities. Endophyte diversity was primarily affected by the orchard location (accounting for 29.4% and 85.9% of the total variation in the PC1 for bacteria and fungi, respectively), followed by the scion genotype (24.3% and 19.5% of PC2), whereas rootstock effects were small (<3% of PC1 and PC2). There were significant differences in the endophyte community between canker-resistant and -susceptible cultivars. Several bacterial and fungal endophyte groups had different relative abundance between susceptible and resistant cultivars. These endophyte groups included putative pathogen antagonists as well as plant pathogens. Their possible ecological roles in the N. ditissima pathosystem are discussed.


Subject(s)
Hypocreales , Malus , Endophytes/genetics , Genotype , Plant Diseases
2.
Foods ; 7(2)2018 Jan 23.
Article in English | MEDLINE | ID: mdl-29360731

ABSTRACT

The efficacy of thyme and savory essential oils were investigated against Botrytis cinerea on apple fruit. Apples treated with thyme and savory essential oils showed significantly lower gray mold severity and incidence. Thyme essential oil at 1% concentration showed the highest efficacy, with lower disease incidence and smaller lesion diameter. The expression of specific pathogenesis-related (PR) genes PR-8 and PR-5 was characterized in apple tissues in response to thyme oil application and B. cinerea inoculation. After 6 h of pathogen inoculation, thyme essential oil induced a 2.5-fold increase of PR-8 gene expression compared to inoculated fruits. After 24 h of inoculation, PR-8 was highly induced (7-fold) in both thyme oil-treated and untreated apples inoculated with B. cinerea. After 48 h of inoculation, PR-8 expression in thyme-treated and inoculated apples was 4- and 6-fold higher than in inoculated and water-treated apples. Neither thyme oil application nor B. cinerea inoculation markedly affected PR-5 expression. These results suggest that thyme oil induces resistance against B. cinerea through the priming of defense responses in apple fruit, and the PR-8 gene of apple may play a key role in the mechanism by which thyme essential oil effectively inhibits gray mold in apple fruit.

SELECTION OF CITATIONS
SEARCH DETAIL
...