Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 9(21): 4801-4807, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29910931

ABSTRACT

The mechanism of methane activation on Mo/HZSM-5 is not yet fully understood, despite the great interest in methane dehydroaromatization (MDA) to replace aromatics production in oil refineries. It is difficult to assess the exact nature of the active site due to fast coking. By pre-carburizing Mo/HZSM-5 with carbon monoxide (CO), the MDA active site formation was isolated from coke formation. With this a clear 13C NMR signal solely from the active site and not obscured by coke was obtained, and it revealed two types of likely molecular Mo (oxy-)carbidic species in addition to the ß-Mo2C nanoparticles often mentioned in the literature. Furthermore, separating the active site formation from coking by pre-carburization helped us examine how methane is activated on the catalytic site by carrying out MDA using isotopically labelled methane (13CH4). Carbon originating from the pre-formed carbide was incorporated into the main products of the reaction, ethylene and benzene, demonstrating the dynamic behavior of the (oxy-)carbidic active sites.

2.
Langmuir ; 33(50): 14278-14285, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29182874

ABSTRACT

Covalent triazine frameworks (CTFs) are porous organic materials promising for applications in catalysis and separation due to their high stability, adjustable porosity, and intrinsic nitrogen functionalities. CTFs are prepared by ionothermal trimerization of aromatic nitriles; however, multiple side reactions also occur under synthesis conditions, and their influence on the material properties is still poorly described. Here we report the systematic characterization of nitrogen in CTFs using X-ray photoelectron spectroscopy. With the use of model compounds, we could distinguish several types of nitrogen species. By combining these data with textural properties, we unravel the influence that the reaction temperature, the catalyst, and the monomer structure and composition have on the properties of the resulting CTF materials.

3.
ACS Appl Mater Interfaces ; 9(31): 26060-26065, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28714671

ABSTRACT

A quasi chemical vapor deposition method for the manufacture of well-defined covalent triazine framework (CTF) coatings on cordierite monoliths is reported. The resulting supported porous organic polymer is an excellent support for the immobilization of two different homogeneous catalysts: (1) an IrIIICp*-based catalyst for the hydrogen production from formic acid and (2) a PtII-based catalyst for the direct activation of methane via Periana chemistry. The immobilized catalysts display a much higher activity in comparison with the unsupported CTF operated in slurry because of improved mass transport. Our results demonstrate that CTF-based catalysts can be further optimized by engineering at different length scales.

4.
Angew Chem Int Ed Engl ; 52(48): 12510-29, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24214688

ABSTRACT

The electronic structure, spectroscopic features, and (catalytic) reactivity of complexes with nitrogen-centered radical ligands are described. Complexes with aminyl ([M(˙NR2)]), nitrene/imidyl ([M(˙NR)]), and nitridyl radical ligands ([M(˙N)]) are detectable and sometimes even isolable species, and despite their radical nature frequently reveal selective reactivity patterns towards a variety of organic substrates. A classification system for complexes with nitrogen-centered radical ligands based on their electronic structure leads to their description as one-electron-reduced Fischer-type systems, one-electron-oxidized Schrock-type systems, or systems with a (nearly) covalent M-N π bond. Experimental data relevant for the assignment of the radical locus (i.e. metal or ligand) are discussed, and the application of complexes with nitrogen-centered radical ligands in the (catalytic) syntheses of nitrogen-containing organic molecules such as aziridines and amines is demonstrated with recent examples. This Review should contribute to a better understanding of the (catalytic) reactivity of nitrogen-centered radical ligands and the role they play in tuning the reactivity of coordination compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...