Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38201793

ABSTRACT

The product of ozonolysis, glycero-(9,10-trioxolane)-trioleate (ozonide of oleic acid triglyceride, [OTOA]), was incorporated into polylactic acid/polycaprolactone (PLA/PCL) blend films in the amount of 1, 5, 10, 20, 30 and 40% w/w. The morphological, mechanical, thermal and antibacterial properties of the biodegradable PLA/PCL films after the OTOA addition were studied. According to DSC and XRD data, the degree of crystallinity of the PLA/PCL + OTOA films showed a general decreasing trend with an increase in OTOA content. Thus, a significant decrease from 34.0% for the reference PLA/PCL film to 15.7% for the PLA/PCL + 40% OTOA film was established using DSC. Observed results could be explained by the plasticizing effect of OTOA. On the other hand, the PLA/PCL film with 20% OTOA does not follow this trend, showing an increase in crystallinity both via DSC (20.3%) and XRD (34.6%). OTOA molecules, acting as a plasticizer, reduce the entropic barrier for nuclei formation, leading to large number of PLA spherulites in the plasticized PLA/PCL matrix. In addition, OTOA molecules could decrease the local melt viscosity at the vicinity of the growing lamellae, leading to faster crystal growth. Morphological analysis showed that the structure of the films with an OTOA concentration above 20% drastically changed. Specifically, an interface between the PLA/PCL matrix and OTOA was formed, thereby forming a capsule with the embedded antibacterial agent. The moisture permeability of the resulting PLA/PCL + OTOA films decreased due to the formation of uniformly distributed hydrophobic amorphous zones that prevented water penetration. This architecture affects the tensile characteristics of the films: strength decreases to 5.6 MPa, elastic modulus E by 40%. The behavior of film elasticity is associated with the redistribution of amorphous regions in the matrix. Additionally, PLA/PCL + OTOA films with 20, 30 and 40% of OTOA showed good antibacterial properties on Pseudomonas aeruginosa, Raoultella terrigena (Klebsiella terrigena) and Agrobacterium tumefaciens, making the developed films potentially promising materials for wound-dressing applications.

2.
Polymers (Basel) ; 14(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080553

ABSTRACT

Glycero-(9,10-trioxolane)-trioleate (ozonide of oleic acid triglyceride, OTOA) was introduced into polylactic acid (PLA) films in amounts of 5, 10, 30, 50, and 70% w/w. The morphological, mechanical, thermal, and water absorption properties of PLA films after the OTOA addition were studied. The morphological analysis of the films showed that the addition of OTOA increased the diameter of PLA spherulites and, as a consequence, increased the proportion of amorphous regions in PLA films. A study of the thermodynamic properties of PLA films by differential scanning calorimetry (DSC) demonstrated a decrease in the glass transition temperature of the films with an increase in the OTOA content. According to DSC and XRD data, the degree of crystallinity of the PLA films showed a tendency to decrease with an increase in the OTOA content in the films, which could be accounted for the plasticizing effect of OTOA. The PLA film with 10% OTOA content was characterized by good smoothness, hydrophobicity, and optimal mechanical properties. Thus, while maintaining high tensile strength of 21 MPa, PLA film with 10% OTOA showed increased elasticity with 26% relative elongation at break, as compared to the 2.7% relative elongation for pristine PLA material. In addition, DMA method showed that PLA film with 10% OTOA exhibits increased strength characteristics in the dynamic load mode. The resulting film materials based on optimized PLA/OTOA compositions could be used in various packaging and biomedical applications.

3.
Polymers (Basel) ; 13(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34372120

ABSTRACT

Biocompatible glycero (9,10-trioxolane) trioleate (ozonide of oleic acid triglyceride, OTOA) was incorporated into polylactic acid (PLA) fibers by electrospinning and nonwoven PLA mats with 1%, 3% and 5% OTOA content. The morphological, mechanical, thermal and water sorption properties of electrospun PLA mats after the addition of OTOA were studied. A morphological analysis showed that the addition of OTOA increased the average fiber diameter and induced the formation of pores on the fiber surface, leading to an increase in the specific surface area for OTOA-modified PLA fibrous mats. PLA fiber mats with 3% OTOA content were characterized by a highly porous surface morphology, an increased specific surface area and high-water sorption. Differential scanning calorimetry (DSC) was used to analyze the thermal properties of the fibrous PLA mats. The glass transition temperatures of the fibers from the PLA-OTOA composites decreased as the OTOA content increased, which was attributed to the plasticizing effect of OTOA. DSC results showed that OTOA aided the PLA amorphization process, thus reducing the crystallinity of the obtained nonwoven PLA-OTOA materials. An analysis of the mechanical properties showed that the tensile strength of electrospun PLA mats was improved by the addition of OTOA. Additionally, fibrous PLA mats with 3% OTOA content showed increased elasticity compared to the pristine PLA material. The obtained porous PLA electrospun fibers with the optimal 3% OTOA content have the potential for various biomedical applications such as drug delivery and in tissue engineering.

4.
Polymers (Basel) ; 12(5)2020 May 10.
Article in English | MEDLINE | ID: mdl-32397628

ABSTRACT

Compositions of polylactide (PLA) and poly(3-hydroxybutyrate) (PHB) thermoplastic polyesters originated from the nature raw have been obtained by blending under shear deformations and electrospinning methods in the form of films and nanofibers as well as unwoven nanofibrous materials, respectively. The degrees of crystallinity calculated on the base of melting enthalpies and thermal transition temperatures for glassy state, cold crystallization, and melting point for individual biopolymers and ternary polymer blends PLA-PHB- poly(ethyleneglycol) (PEG) have been evaluated. It has been shown that the mechanical properties of compositions depend on the presence of plasticizers PEG with different molar masses in interval of 400-1000. The experiments on the action of mold fungi on the films have shown that PHB is a fully biodegradable polymer unlike PLA, whereas the biodegradability of the obtained composites is determined by their composition. The sorption activity of PLA-PHB nanofibers and unwoven nanofibrous PLA-PHB composites relative to water and oil has been studied and the possibility of their use as absorbents in wastewater treatment from petroleum products has been demonstrated.

5.
Polymers (Basel) ; 12(3)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178319

ABSTRACT

Actually, in order to replace traditional fossil-based polymers, many efforts are devoted to the design and development of new and high-performance bioplastics materials. Poly(hydroxy alkanoates) (PHAS) as well as polylactides are the main candidates as naturally derived polymers. The intention of the present study is to manufacture fully bio-based blends based on two polyesters: poly (3-hydroxybutyrate) (PHB) and polylactic acid (PLA) as real competitors that could be used to replace petrol polymers in packaging industry. Blends in the shape of films have been prepared by chloroform solvent cast solution methodology, at different PHB/PLA ratios: 1/0, 1/9, 3/7, 5/5, 0/1. A series of dynamic explorations have been performed in order to characterize them from a different point of view. Gas permeability to N2, O2, and CO2 gases and probe (TEMPO) electron spin resonance (ESR) analyses were performed. Blend surface morphology has been evaluated by Scanning Electron Microscopy (SEM) while their thermal behavior was analyzed by Differential Scanning Calorimetry (DSC) technique. Special attention was devoted to color and transparency estimation. Both probe rotation mobility and N2, O2, and CO2 permeation have monotonically decreased during the transition from PLA to PHB, for all contents of bio-blends, namely because of transferring from PLA with lower crystallinity to PHB with a higher one. Consequently, the role of the crystallinity was elucidated. The temperature dependences for CO2 permeability and diffusivity as well as for probe correlation time allowed the authors to evaluate the activation energy of both processes. The values of gas transport energy activation and TEMPO rotation mobility are substantially close to each other, which should testify that polymer segmental mobility determines the gas permeability modality.

6.
Polymers (Basel) ; 10(8)2018 Jul 25.
Article in English | MEDLINE | ID: mdl-30960742

ABSTRACT

The academic exploration and technology design of active packaging are coherently supplying innovative approaches for enhancing the quality and safety of food, as well as prolonging their shelf-life. With the object of comparison between two barrier materials, such as stable petrochemical polyurethane (PU), (BASF), and biodegradable natural poly(3-hydroxybutyrate) (PHB), (Biomer Co., Krailling, Germany), the study of antibacterial agent release has been performed. For the characterization of polymer surface morphology and crystallinity, the scanning electron microscopy (SEM), atomic force microscopy (AFM) and differential scanning calorimetry (DSC) were used respectively. The antimicrobial activity of chlorhexidine digluconate (CHD) has been estimated by the Bauer⁻Kirby Disk Diffusion Test. It was shown that the kinetic release profiles of CHD, as the active agent, in both polymers, significantly differed due to the superposition of diffusion and surface degradation in poly(3-hydroxybutyrate) (PHB). To emphasize the special transport phenomena in polymer packaging, the diffusivity modeling was performed and the CHD diffusion coefficients for the plane films of PU and PHB were further compared. The benefit of active biodegradable packaging on the base of PHB is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...