Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38794500

ABSTRACT

Electrospun ultrathin fibers based on binary compositions of polylactide (PLA) and poly(ε-caprolactone) (PCL) with the various content from the polymer ratio from 0/100 to 100/0 have been explored. Combining thermal (DSC) and spectropy (ESR) techniques, the effect of biopolymer content on the characteristics of the crystal structure of PLA and PCL and the rotative diffusion of the stable TEMPO radical in the intercrystallite areas of PLA/PCL compositions was shown. It was revealed that after PLA and PCL blending, significant changes in the degree of crystallinity of PLA, PCL segment mobility, sorption of the Tempo probe, as well as its activation energy of rotation in the intercrystalline areas of PLA/PCL fibers, were evaluated. The characteristic region of biopolymers' composition from 50/50 to 30/70% PLA/PCL blend ratio was found, where the inversion transition of PLA from dispersive medium to dispersive phase where an inversion transition is assumed when the continuous medium of the PLA transforms into a discrete phase. The performed studies made it possible, firstly, to carry out a detailed study of the effect of the system component ratio on the structural and dynamic characteristics of the PLA/PCL film material at the molecular level.

2.
Polymers (Basel) ; 15(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37896415

ABSTRACT

In order to create new biodegradable nanocomposites for biomedicine, packaging, and environmentally effective adsorbents, ultra-thin composite fibers consisting of poly(3-hydroxybutyrate) (PHB) and graphene oxide (GO) were obtained by electrospinning. Comprehensive studies of ultrathin fibers combining thermal characteristics, dynamic electron paramagnetic resonance (ESR) probe measurements, and scanning electron microscopy (SEM) were carried out. It is shown that at the addition of 0.05, 0.1, 0.3, and 1% OG, the morphology and geometry of the fibers and their thermal and dynamic characteristics depend on the composite content. The features of the crystalline and amorphous structure of the PHB fibers were investigated by the ESR and DSC methods. For all compositions of PHB/GO, a nonlinear dependence of the correlation time of molecular mobility TEMPO probe (τ) and enthalpy of biopolyether melting (ΔH) is observed. The influence of external factors on the structural-dynamic properties of the composite fiber, such as hydrothermal exposure of samples in aqueous medium at 70 °C and ozonolysis, leads to extreme dependencies of τ and ΔH, which reflect two processes affecting the structure in opposite ways. The plasticizing effect of water leads to thermal destruction of the orientation of the pass-through chains in the amorphous regions of PHB and a subsequent decrease in the crystalline phase, and the aggregation of GO nanoplates into associates, reducing the number of GO-macromolecule contacts, thus increasing segmental mobility, as confirmed by decreasing τ values. The obtained PHB/GO fibrillar composites should find application in the future for the creation of new therapeutic and packaging systems with improved biocompatibility and high-barrier properties.

3.
Polymers (Basel) ; 15(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37571064

ABSTRACT

α-tricalcium (α-TCP) phosphate is widely used as an osteoinductive biocompatible material, serving as an alternative to synthetic porous bone materials. The objective of this study is to obtain a highly filled fibrous nonwoven material composed of poly-3-hydroxybutyrate (PHB) and α-TCP and to investigate the morphology, structure, and properties of the composite obtained by the electrospinning method (ES). The addition of α-TCP had a significant effect on the supramolecular structure of the material, allowing it to control the crystallinity of the material, which was accompanied by changes in mechanical properties, FTIR spectra, and XRD curves. The obtained results open the way to the creation of new osteoconductive materials with a controlled release of the source of calcium into the living organism.

4.
Membranes (Basel) ; 13(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37233539

ABSTRACT

This work addresses the challenges concerning the development of "all-green" high-performance biodegradable membrane materials based on poly-3-hydroxybutyrate (PHB) and a natural biocompatible functional additive, iron-containing porphyrin, Hemin (Hmi) via modification and surface functionalization. A new facile and versatile approach based on electrospinning (ES) is advanced when modification of the PHB membranes is performed by the addition of low concentrations of Hmi (from 1 to 5 wt.%). Structure and performance of the resultant {HB/Hmi membranes were studied by diverse physicochemical methods, including differential scanning calorimetry, X-ray analysis, scanning electron microscopy, etc. Modification of the PHB fibrous membranes with Hmi allows control over their quality, supramolecular structure, morphology, and surface wettability. As a result of this modification, air and liquid permeability of the modified electrospun materials markedly increases. The proposed approach provides preparation of high-performance all-green membranes with tailored structure and performance for diverse practical applications, including wound healing, comfort textiles, facial protective masks, tissue engineering, water and air purification, etc.

5.
Polymers (Basel) ; 15(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37177252

ABSTRACT

A composite material based on electrospinning printed polyhydroxybutyrate fibers impregnated with brushite cement containing Zn substitution was developed for bone implant applications. Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy were applied for materials characterization. Soaking the composite in Ringer's solution led to the transformation of brushite into apatite phase, accompanied by the morphology changes of the material. The bending strength of the composite material was measured to be 3.1 ± 0.5 MPa. NCTC mouse fibroblast cells were used to demonstrate by means of the MTT test that the developed material was not cytotoxic. The behavior of the human dental pulp stem cells on the surface of the composite material investigated by the direct contact method was similar to the control. It was found that the developed Zn containing composite material possessed antibacterial properties, as testified by microbiology investigations against bacteria strains of Escherichia coli and Staphylococcus aureus. Thus, the developed composite material is promising for the treatment of damaged tissues with bacterial infection complications.

7.
Polymers (Basel) ; 14(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36433006

ABSTRACT

The development of innovative fibrous materials with valuable multifunctional properties based on biodegradable polymers and modifying additives presents a challenging direction for modern materials science and environmental safety. In this work, high-performance composite fibrous materials based on semicrystalline biodegradable poly-3-hydroxybutyrate (PHB) and natural iron-containing porphyrin, hemin (Hmi) were prepared by electrospinning. The addition of Hmi to the feed PHB mixture (at concentrations above 3 wt.%) is shown to facilitate the electrospinning process and improve the quality of the electrospun PHB/Hmi materials: the fibers become uniform, their average diameter decreases down to 1.77 µm, and porosity increases to 94%. Structural morphology, phase composition, and physicochemical properties of the Hmi/PHB fibrous materials were studied by diverse physicochemical methods, including electronic paramagnetic resonance, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, elemental analysis, differential scanning calorimetry, Fourier-transformed infrared spectroscopy, mechanical analysis, etc. The proposed nonwoven Hmi/PHB composites with high porosity, good mechanical properties, and retarded biodegradation due to high antibacterial potential can be used as high-performance and robust materials for biomedical applications, including breathable materials for wound disinfection and accelerated healing, scaffolds for regenerative medicine and tissue engineering.

8.
Polymers (Basel) ; 14(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36236003

ABSTRACT

Comprehensive studies combining X-ray diffraction analysis, thermophysical, dynamic measurements by probe method and scanning electron microscopy have been carried out. The peculiarity of the crystalline and amorphous structure of ultra-thin fibers based on poly(3-hydroxybutyrate) (PHB) containing minor concentrations (0-5%) of a gene and a tetraphenylporphyrin (TFP) complex with iron (in the form of FeCl) are considered. When these complexes are added to the PHB fibers, the morphology of the fibers change: a sharp change in the crystallinity and molecular mobility in the amorphous regions of PHB is observed. When adding a gel to the fibers of PHB, a significant decrease in the degree of crystallinity, melting enthalpy, and correlation time can be observed. The reverse pattern is observed in a system with the addition of FeCl-TFP-there is a significant increase in the degree of crystallinity, melting enthalpy and correlation time. Exposure of PHB fibers with gemin in an aqueous medium at 70 °C leads to a decrease in the enthalpy of melting in modified fibers-to an increase in this parameter. The molecular mobility of chains in amorphous regions of PHB/gemin fibers increases at the same time, a nonlinear dependence of changes in molecular dynamics is observed in PHB/FeCl-TFP fibers. Ozonolysis has a complex effect on the amorphous structure of the studied systems. The obtained fibrous materials have bactericidal properties and should be used in the creation of new therapeutic systems of antibacterial and antitumor action.

9.
Polymers (Basel) ; 14(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35160599

ABSTRACT

The effect of small additions (1-5 wt.%) of tetraphenylporphyrin (TPP) and its complexes with Fe (III) and Sn (IV) on the structure and properties of ultrathin fibers based on poly(3-hydroxybutyrate) (PHB) has been studied. A comprehensive study of biopolymer compositions included X-ray diffraction (XRD), differential scanning calorimetry (DSC), spin probe electron paramagnetic resonance method (EPR), and scanning electron microscopy (SEM). It was demonstrated that the addition of these dopants to the PHB fibers modifies their morphology, crystallinity and segmental dynamics in the amorphous regions. The annealing at 140 °C affects crystallinity and molecular mobility in the amorphous regions of the fibers, however the observed changes exhibit multidirectional behavior, depending on the type of porphyrin and its concentration in the fiber. Fibers exposure to an aqueous medium at 70 °C causes a nonlinear change in the enthalpy of melting and challenging nature of a change of the molecular dynamics.

10.
Polymers (Basel) ; 13(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34685287

ABSTRACT

A complex of structure-sensitive methods of morphology analysis was applied to study film materials obtained from blends of poly(3-hydroxybutyrate) (PHB) and chitosan (CHT) by pouring from a solution, and nonwoven fibrous materials obtained by the method of electrospinning (ES). It was found that with the addition of CHT to PHB, a heterophase system with a nonequilibrium stressed structure at the interface was formed. This system, if undergone accelerated oxidation and hydrolysis, contributed to the intensification of the growth of microorganisms. On the other hand, the antimicrobial properties of CHT led to inhibition of the biodegradation process. Nonwoven nanofiber materials, since having a large specific surface area of contact with an aggressive agent, demonstrated an increased ability to be thermo-oxidative and for biological degradation in comparison with film materials.

11.
Polymers (Basel) ; 13(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803794

ABSTRACT

Ultrathin electrospun fibers of pristine biopolyesters, poly(3-hydroxybutyrate) (PHB) and polylactic acid (PLA), as well as their blends, have been obtained and then explored after exposure to hydrolytic (phosphate buffer) and oxidative (ozone) media. All the fibers were obtained from a co-solvent, chloroform, by solution-mode electrospinning. The structure, morphology, and segmental dynamic behavior of the fibers have been determined by optical microscopy, SEM, ESR, and others. The isotherms of water absorption have been obtained and the deviation from linearity (the Henry low) was analyzed by the simplified model. For PHB-PLA fibers, the loss weight increments as the reaction on hydrolysis are symbate to water absorption capacity. It was shown that the ozonolysis of blend fibrils has a two-stage character which is typical for O3 consumption, namely, the pendant group's oxidation and the autodegradation of polymer molecules with chain rupturing. The first stage of ozonolysis has a quasi-zero-order reaction. A subsequent second reaction stage comprising the back-bone destruction has a reaction order that differs from the zero order. The fibrous blend PLA/PHB ratio affects the rate of hydrolysis and ozonolysis so that the fibers with prevalent content of PLA display poor resistance to degradation in aqueous and gaseous media.

SELECTION OF CITATIONS
SEARCH DETAIL
...