Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sports (Basel) ; 5(2)2017 Jun 08.
Article in English | MEDLINE | ID: mdl-29910395

ABSTRACT

BACKGROUND: This study evaluates the effect on power produced during a modified lifting task in the overweight and obese after three months of either resistance or aerobic training. METHODS: Seventeen male subjects divided randomly into two groups performed deadlift and deadlift high pull, both with increasing weights up to maximal power, prior to and after the training programs (three sessions per week). RESULTS: Their mean power increased significantly during the deadlift at 20 kg (14.3%, p = 0.026), 30 kg (17.7%, p = 0.008), 40 kg (16.5%, p = 0.011), 50 kg (14.5%, p = 0.020), and 60 kg (14.3%, p = 0.021) and during the deadlift high pull at 30 kg (9.9%, p = 0.037), 40 kg (10.1%, p = 0.035), and 50 kg (8.2%, p = 0.044) after the resistance training. However, the group that participated in the aerobic training failed to show any significant changes in power performance during either the deadlift or deadlift high pull. CONCLUSION: Three months of resistance training enhances power outputs during a lifting task with weights from 30 to 50 kg (~40%⁻60% of 1-repetition maximum) in the overweight and obese. Because this test was sensitive in revealing pre-post training changes in lifting performance, it should be implemented in the functional diagnostics for overweight and obese individuals and also complement existing testing methods.

2.
J Mot Behav ; 49(4): 398-406, 2017.
Article in English | MEDLINE | ID: mdl-27726693

ABSTRACT

The authors evaluated the effect of 3 months of resistance and aerobic training (3 sessions/week) on body balance in a group of 25 overweight and obese individuals. Prior to and after the training, they performed static and task-oriented balance tests under various conditions. Mean center of pressure (CoP) velocity and mean trace length of the CoP in the y-axis registered during a one-legged stance significantly decreased after the resistance training (19.1%, p = .024; 29.3%, p = .009). Mean trace length of the CoP in the y-axis decreased significantly also during a bipedal stance on a foam surface with eyes open and closed (10.9%, p = .040; 18.2%, p = .027). In addition, mean CoP distance and mean squared CoP distance in the anteroposterior direction during a visually guided center of mass (CoM) tracking task significantly improved (14.7%, p = .033; 28.2%, p = .016). However, only mean trace length of the CoP in the y-axis during a bipedal stance on a foam surface with eyes open and closed significantly decreased after the aerobic training (10.3%, p = .047; 16.5%, p = .029). It may be concluded that resistance training is more efficient for the improvement of the anteroposterior unilateral stability and the accuracy of the regulation of the CoM anteroposterior position than aerobic training in overweight and obese individuals.


Subject(s)
Feedback, Sensory/physiology , Overweight/rehabilitation , Postural Balance/physiology , Resistance Training/methods , Adult , Humans , Male , Obesity/rehabilitation , Treatment Outcome
3.
Am J Mens Health ; 11(6): 1728-1738, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27530821

ABSTRACT

This study evaluates the effect of 3 months resistance and aerobic training on muscle strength and power in 17 male overweight and obese men. Subjects underwent either a resistance or aerobic training for a period of 3 months (three sessions per week). Peak isometric force, rate of force development, peak power and height of countermovement and squat jumps, reactive strength index, and mean power in the concentric phase of bench presses were all assessed prior to and after completing the training program. Results identified a significant increase of mean power during both countermovement bench presses at 30 kg (18.6%, p = .021), 40 kg (14.6%, p = .033), and 50 kg (13.1%, p = .042) and concentric-only bench presses at 30 kg (19.6%, p = .017) and 40 kg (13.9%, p = .037) after the resistance training. There was also a significant increase in the height of the jump (12.8%, p = .013), peak power (10.1%, p = .026), and peak velocity (9.7%, p = .037) during the countermovement jump and height of the jump (11.8%, p = .019), peak power (9.6%, p = .032), and peak velocity (9.5%, p = .040) during the squat jump. There were no significant changes in the reactive strength index, peak force, and the rate of force development after the resistance training. The aerobic group failed to show any significant improvements in these parameters. It may be concluded that 3 months of resistance training without caloric restriction enhances upper and lower body muscle power in overweight and obese men.


Subject(s)
Muscle Strength , Obesity , Resistance Training , Adult , Exercise Test/methods , Humans , Male , Physical Fitness/physiology
4.
J Back Musculoskelet Rehabil ; 30(2): 353-362, 2017.
Article in English | MEDLINE | ID: mdl-27858700

ABSTRACT

BACKGROUND: Contrary to static and dynamic balance, there is a lack of scientific evidence on the training induced changes in reactive balance control in response to unexpected perturbations in overweight and obese individuals. OBJECTIVE: This study evaluates the effect of 3 months of resistance and aerobic training programs on postural responses to unexpected perturbations under stable and unstable conditions in the overweight and obese. METHODS: A group of 17 overweight and obese subjects, divided into two groups, underwent either resistance or aerobic training for a period of 3 months (3 sessions per week). Prior to and after completing the training, they performed the load release balance test while standing on either a stable or unstable surface, with eyes open and closed. RESULTS: Peak posterior center of pressure (CoP) displacement, and the time to peak posterior CoP displacement during a bipedal stance on a foam surface with eyes open (17.3%, p = 0.019 and 15.4%, p = 0.029) and eyes closed (15.0%, p = 0.027 and 13.2%, p = 0.034), decreased significantly. In addition, the total anterior to posterior CoP displacement, and the time from peak anterior to peak posterior CoP displacement, both with eyes open (18.1%, p = 0.017 and 12.2%, p = 0.040) and eyes closed (16.3%, p = 0.023 and 11.7%, p = 0.044), also significantly decreased. However, after completing the resistance training, the parameters registered while standing on a stable platform, both with eyes open and closed, did not change significantly. The group that underwent an aerobic training also failed to show any significant changes in parameters of the load release balance test. CONCLUSION: Three months of resistance training in overweight and obese subjects improves reactive balance control in response to unexpected perturbations under unstable conditions, both with and without visual cues. Due to the fact that this unstable load release balance test was found to be sensitive in revealing post-training changes, it would be suitable for implementing in the functional diagnostic for this group, in addition to complementing existing testing methods.


Subject(s)
Obesity/physiopathology , Overweight/physiopathology , Postural Balance/physiology , Posture/physiology , Resistance Training/methods , Adult , Humans , Male
5.
J Strength Cond Res ; 28(10): 2919-26, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24787676

ABSTRACT

The study compares the differences in peak and mean power of concentric-only and countermovement resistance exercises (ΔP) with different weights. A group of 27 fit men randomly performed 3 repetitions of either barbell bench presses or barbell squats on different days. The initial weight of 20 kg was increased by 10 or 5 kg (at higher loads) up to at least 85% of a previously established 1 repetition maximum (1RM). A computer-based system FiTRO Dyne Premium was used to monitor force and velocity and to calculate power. The peak values and mean values of power during the entire concentric phase of lifting and during the acceleration phase were analyzed. Results showed that maximal ΔP calculated from the peak and mean values in the acceleration phase of bench presses was achieved at lower weights (118.4 ± 19.0 W at 47% of 1RM and 116.2 ± 15.3 W at 48% of 1RM, respectively) than the one calculated from mean values in the entire concentric phase of lifting (114.8 ± 14.8 W at 57% 1RM). Likewise, maximal ΔP calculated from the peak and mean values in the acceleration phase of squats was achieved at lower weights (127.7 ± 20.4 W at 67% of 1RM and 124.3 ± 22.1 W at 69% of 1RM, respectively) than the one calculated from the mean values in the entire concentric phase of lifting (125.0 ± 19.2 W at 77% of 1RM). This fact has to be taken into account when training efficiency is evaluated, namely, in sports requiring the production of maximal force in a short time.


Subject(s)
Muscle Strength , Muscle, Skeletal/physiology , Resistance Training , Weight Lifting/physiology , Acceleration , Adult , Biomechanical Phenomena , Ergometry , Exercise Test , Humans , Male , Random Allocation , Young Adult
6.
J Appl Biomech ; 30(2): 213-20, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24042238

ABSTRACT

The study evaluates the effect of weight lifted on power in the concentric phase of resistance exercises on stable and unstable surfaces. A group of 19 fit men performed randomly on different days 3 reps of (a) barbell chest presses on the bench and Swiss ball, and (b) barbell squats on stable base and BOSU ball. Exercises were performed without and with countermovement (CM) using maximal effort in concentric phase. Initial weight of 20 kg was increased by 10 kg or 5 kg (at higher loads) up to at least 85% of previously established 1RM under stable conditions. Results showed no significant differences in mean power in the concentric phase of stable and unstable CM chest presses at lower weights lifted (from 20 to 50 kg). However, its values were significantly higher during chest presses on the bench than on Swiss ball while lifting higher weights (from 60 to 90 kg). Similarly, mean power in the concentric phase of squats was significantly higher on stable base than on BOSU ball at higher weights lifted (from 60 to 90 kg). Though a set of data showed significant differences, the effect sizes≤0.7 suggest no practically meaningful differences. It may be concluded that unstable base compromises the power in the concentric phase of resistance exercises, however, only at higher weights lifted.


Subject(s)
Muscle Strength/physiology , Weight Lifting/physiology , Biomechanical Phenomena , Electromyography , Humans , Male , Muscle, Skeletal/physiology , Postural Balance/physiology , Surface Properties , Young Adult
7.
J Strength Cond Res ; 26(12): 3230-6, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22290524

ABSTRACT

The study compares power outputs in the concentric phase of chest presses and squats performed in the interval mode on stable and unstable surface, respectively. A group of 16 physical education students performed randomly on different days 6 sets of 8 repetitions of (a) chest presses on the bench and Swiss ball, respectively, and (b) squats on stable support base and Bosu ball, respectively, with 2 minutes of rest period between sets. The exercises were performed with previously established 70% of 1 repetition maximum under stable conditions. A PC-based system FiTRO Dyne Premium was used to monitor force and velocity and to calculate power. The results showed significantly lower power outputs when resistance exercises were performed on an unstable than a stable support base. In the initial set, mean power in concentric phase of lifting decreased more profoundly under unstable than under stable conditions during both chest presses (13.2 and 7.7%, respectively) and squats (10.3 and 7.2%, respectively). In the final set, the reduction rates of mean power in the concentric phase of chest presses were significantly (p < 0.05) greater on the Swiss ball than on the bench (19.9 and 11.8%, respectively). On the other hand, there were no significant differences in decline of mean power in the concentric phase of squats on the Bosu ball and on stable support base (11.4 and 9.6%, respectively). It may be concluded that power outputs during resistance exercises is more profoundly compromised under unstable than under stable conditions, and this effect is more evident for barbell chest presses on the Swiss ball than for barbell squats on the Bosu ball. These findings have to be taken into account when instability resistance exercises are implemented into the training program, namely, for sports that require production of maximal force in short time.


Subject(s)
Postural Balance/physiology , Resistance Training/methods , Biomechanical Phenomena , Female , Humans , Male , Muscle Strength/physiology , Muscle, Skeletal/physiology , Sports Equipment , Weight Lifting/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...